It is easy to see that for every fraction in the form  (k > 0), we can always find two positive integers x and y,x ≥ y, such that:

.

Now our question is: can you write a program that counts how many such pairs of x and y there are for any givenk?

Input

Input contains no more than 100 lines, each giving a value of k (0 < k ≤ 10000).

Output

For each k, output the number of corresponding (xy) pairs, followed by a sorted list of the values of x and y,
as shown in the sample output.

Sample Input

2
12

Sample Output

2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24

这个题目做起来不难,难点在数值精度到问题上,我是参照了这为朋友到讲解

http://www.2cto.com/kf/201111/111420.html

/*
* FractionAgain.cpp
*
* Created on: 2014-8-27
* Author: root
*/ #include <iostream>
#include <vector>
#include <string>
#include <cstdio>
using namespace std;
bool isInt(double n){
double c = n-(int)n;
if(n >= 0){
if( c < 1e-15 || c < -0.999999999999999 ) {
//单精度对应1e-6和6个9,双精度对应1e-15和15个9
return true;
}
else{
return false;
}
}
else{
if( -c < 1e-15 || -c < -0.999999999999999 ){
return true;
}
else{
return false;
}
} } int main(){ long k ;
vector<string> ans;
char str[100];
while((cin>>k) && k != 0){
long max = k << 1;
int y;
ans.clear();
for ( y = k + 1; y <= max; ++y) {
double x = (double)(k*y)/(y - k);
if(isInt(x)){
sprintf(str,"1/%ld = 1/%d + 1/%d\n",k,(int)x,y);
ans.push_back(str);
} }
int size = ans.size();
cout<<size<<endl;
for (y = 0;y < size;y++) {
cout<<ans[y];
}
} return 0;
}

分数拆分( Fractions Again, UVA 10976)-ACM的更多相关文章

  1. 分数拆分(Fractions Again?!, UVa 10976)

    题目链接:https://vjudge.net/problem/UVA-10976 It is easy to see that for every fraction in the form 1k(k ...

  2. Fractions Again?! UVA - 10976

    It is easy to see that for every fraction in the form 1k(k > 0), we can always find two positive ...

  3. UVA10976 分数拆分 Fractions Again?! 题解

    Content 给定正整数 \(k\),找到所有的正整数 \(x \geqslant y\),使得 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\). 数据范围:\(0& ...

  4. 暴力枚举 UVA 10976 Fractions Again?!

    题目传送门 /* x>=y, 1/x <= 1/y, 因此1/k - 1/y <= 1/y, 即y <= 2*k */ #include <cstdio> #inc ...

  5. 洛谷P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 151通过 203提交 题目提供者该用户不存在 标签USACO 难度普及- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 输入一个 ...

  6. NYOJ 66 分数拆分

    分数拆分 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输入 第一行输入一个 ...

  7. UVA 725 UVA 10976 简单枚举

    UVA 725 题意:0~9十个数组成两个5位数(或0开头的四位数),要求两数之商等于输入的数据n.abcde/fghij=n. 思路:暴力枚举,枚举fghij的情况算出abcde判断是否符合题目条件 ...

  8. 洛谷——P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

  9. nyoj_66_分数拆分_201312012122

    分数拆分 时间限制:3000 ms  |           内存限制:65535 KB 难度:1   描述 现在输入一个正整数k,找到所有的正整数x>=y,使得1/k=1/x+1/y.   输 ...

  10. 洛谷 P1458 顺序的分数 Ordered Fractions

    P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...

随机推荐

  1. Little Kings - SGU 223(状态压缩)

    题目大意:在一个N*N的棋盘上放置M个国王,已知国王会攻击与它相邻的8个格子,要求放置的额国王不能相互攻击,求放置的方式有多少种. 分析:用dp[row][state][nOne],表示本行状态sta ...

  2. Spring三 Bean的三种创建方式

    创建Bean的三种方式在大多数情况下,Spring容器直接通过new关键字调用构造器来创建Bean实例,而class属性指定Bean实例的实现类,但这不是实例化Bean的唯一方法.实际上,Spring ...

  3. thinkphp I方法取传参

    /** * 获取输入参数 支持过滤和默认值 * 使用方法: * <code> * I('id',0); 获取id参数 自动判断get或者post * I('post.name','','h ...

  4. C# 模拟用户登录

    , data.Length);            newStream.Close();                               request.CookieContainer  ...

  5. 在Tomcat下部署web项目

    每个web项目可以以两种方式存在,如联合风控项目,Urc.war,另一中是Urc解压后的目录结构.而tomcat目录下的\webapps\下则均是要部署的web项目解压后的文件夹,启动tomcat后, ...

  6. 【Android - 框架】之ORMLite的使用

    Android中有很多操作SQLite数据库的框架,现在最常见.最常用的是ORMLite和GreenDAO.ORMLite相比与GreenDAO来说是一个轻量级的框架,而且学习成本相对较低.所以这个帖 ...

  7. 异常Address already in use: JVM_Bind的处理

    如题,Address already in use: JVM_Bind这个异常的意思就是说jvm被占用了 那么大家一般的解决情况都是重启一下eclipse , 结果还是不行,结果就只能重启电脑了. 对 ...

  8. 分享一个牛逼的PHP无限极分类生成树方法,巧用引用(转)

    你还在用浪费时间又浪费内存的递归遍历无限极分类吗,看了该篇文章,我觉得你应该换换了.这是我在OSChina上看到的一段非常精简的PHP无限极分类生成树方法,巧在引用,整理分享了. function g ...

  9. switch-case参数类型

    switch语句用法: 0. switch语句由一个控制表达式和多个case标签组成 1. switch控制表达式支持的类型有byte.short.char.int.enum(JDK5).String ...

  10. Android推送技术研究

    前言 最近研究Android推送的实现, 研究了两天一夜, 有了一点收获, 写下来既为了分享, 也为了吐槽. 需要说明的是有些东西偏底层硬件和通信行业, 我对这些一窍不通, 只能说说自己的理解. 为什 ...