题目:

Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 168 Accepted Submission(s): 98
 
Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
 
Output
            Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
 
Source
Central Europe 1999
 
Recommend
Eddy
 

题目分析:

求凸多边形的重心,简单题。

1、 累加和求重心
设平面上有N 个离散数据点( xi , yi ) ( i = 1, 2, ., n) , 其
多边形重心G( . x1, . y1) 为:

  

  这是求多边形最简单直观的方法。能够直接利用离散数
据点的x, y坐标就能求图形重心。

可是缺陷在于没有对离散
数据点所围图形做不论什么处理和分析,精度不够。

2、 算法一:在讲该算法时,先要明确以下几个定理。

定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。它的重心坐标为:

  xg = (x1+x2+x3) / 3 ;                       yg = (y1+y2+y3) / 3 ;

定理2 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。

该三角形的面积为:

  S =  ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;

  △A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。

  另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。

  原理:将多边形划分成n个小区域, 每一个小区域面积为σi ,重心为Gi ( . xi , . yi ) ,利用求平面薄板重心公式把积分变
  成累加和:

    

                  

    由前面所提出的原理和数学定理能够得出求离散数据点所围多边形的一般重心公式:以Ai ( xi , yi ) ( i = 1, 2, ., n) 为顶点的随意N边形A1A2 .An ,将它划    分成N - 2个三角形(如图1) 。每一个三角形的重心为Gi ( . xi , . yi ) ,面积为σi。那么多边形的重心坐标G( .x2, .y2) 为:

  

图1  多边形分解

代码例如以下:

#include <iostream>
#include <cstdio> using namespace std; const int maxn = 1000001; struct PPoint {
double x, y;
}; double Area(PPoint p0, PPoint p1, PPoint p2) {
double area = 0;
area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y
- p0.x * p2.y;
return area / 2; // 另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针。相除后就抵消了。 } int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n); PPoint p0,p1,p2; scanf("%lf %lf",&p0.x,&p0.y);
scanf("%lf %lf",&p1.x,&p1.y); double sum_area = 0;
double sum_x = 0;
double sum_y = 0; int i;
for(i = 2 ; i < n ; ++i){
scanf("%lf %lf",&p2.x,&p2.y); double area = Area(p0,p1,p2);
sum_area += area;
sum_x += (p0.x + p1.x+ p2.x)*area;
sum_y += (p0.y + p1.y + p2.y)*area;
p1 = p2;
} printf("%.2lf %.2lf\n",sum_x/(sum_area*3),sum_y/(sum_area*3));
} return 0;
}

(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)的更多相关文章

  1. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  2. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  3. HDU1115--Lifting the Stone(求凸多边形的重心)

    Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...

  4. hdu 2036:改革春风吹满地(叉积求凸多边形面积)

    改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. hdu 1115 Lifting the Stone 多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  9. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. [置顶] 自己动手写Web容器之TomJetty之六:动态页面引入

    传送门 ☞ 1.Web服务内功经脉 传送门 ☞ 2.让服务动起来 传送门 ☞ 3.掀起请求盖头来 传送门 ☞ 4.静态页面起步 传送门 ☞ 5.包装请求参数 在上一节,我们已经完成了TomJetty服 ...

  2. Java反射机制的使用方法

    Java的反射机制同意你在程序执行的过程中获取类定义的细节.有时候在程序执行的时候才得知要调用哪个方法,这时候反射机制就派上用场了. 获取类 类的获取方法有下面几种: forName().通过Clas ...

  3. Html中隐藏a标签

    <div><a href="#"><span style="visibility:hidden">我的</span&g ...

  4. 使用PageHeap.EXE或GFlags.EXE检查内存越界错误

    必先利其器之一:使用PageHeap.EXE或GFlags.EXE检查内存越界错误 Article last modified on 2002-6-3 ------------------------ ...

  5. Ray Through Glasses

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=30506#problem/T 题意:给你一束光,问你在一个三层的平面类传递n次的种数: 仔 ...

  6. 模仿《百度音乐HD》添加到下载框动画

    上次听有人说喜欢<百度音乐HD>添加到下载动画 ,我就尝试模仿了下,没想到,今天code4app(地址)也有了这个,但是 这个动画基本相同,我们的思路还是部一样的. 都可以参考 .主要关键 ...

  7. HDU 1007 近期点对

    分治法求近期点对 递归将点不断分成小组.计算最短距离.此时的最短距离不过两点都属两块的某一块(这里的切割点是mid点). 还须要考虑两点分属两块的情况. 这时对于选点则把范围缩小到了以mid为中心. ...

  8. Linux程序设计学习笔记----多线程编程线程同步机制之相互排斥量(锁)与读写锁

    相互排斥锁通信机制 基本原理 相互排斥锁以排他方式防止共享数据被并发訪问,相互排斥锁是一个二元变量,状态为开(0)和关(1),将某个共享资源与某个相互排斥锁逻辑上绑定之后,对该资源的訪问操作例如以下: ...

  9. 字符串转换为整数”123“-&gt;123

    字符串转换为整数"123"->123 题目描写叙述: 输入一个由数字组成的字符串.把它转换成整数并输出. 比如:输入字符串"123".输出整数123. 给 ...

  10. poj 1743 男人八题之后缀数组求最长不可重叠最长重复子串

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14874   Accepted: 5118 De ...