(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)
题目:
Lifting the Stone |
| Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
| Total Submission(s): 168 Accepted Submission(s): 98 |
|
Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
|
|
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
|
|
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
|
|
Sample Input
2 |
|
Sample Output
0.00 0.00 |
|
Source
Central Europe 1999
|
|
Recommend
Eddy
|
题目分析:
求凸多边形的重心,简单题。
1、 累加和求重心
设平面上有N 个离散数据点( xi , yi ) ( i = 1, 2, ., n) , 其
多边形重心G( . x1, . y1) 为:

这是求多边形最简单直观的方法。能够直接利用离散数
据点的x, y坐标就能求图形重心。
可是缺陷在于没有对离散
数据点所围图形做不论什么处理和分析,精度不够。
2、 算法一:在讲该算法时,先要明确以下几个定理。
定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。它的重心坐标为:
xg = (x1+x2+x3) / 3 ; yg = (y1+y2+y3) / 3 ;
定理2 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。
该三角形的面积为:
S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;
△A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。
另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
原理:将多边形划分成n个小区域, 每一个小区域面积为σi ,重心为Gi ( . xi , . yi ) ,利用求平面薄板重心公式把积分变
成累加和:


由前面所提出的原理和数学定理能够得出求离散数据点所围多边形的一般重心公式:以Ai ( xi , yi ) ( i = 1, 2, ., n) 为顶点的随意N边形A1A2 .An ,将它划 分成N - 2个三角形(如图1) 。每一个三角形的重心为Gi ( . xi , . yi ) ,面积为σi。那么多边形的重心坐标G( .x2, .y2) 为:


图1 多边形分解
代码例如以下:
#include <iostream>
#include <cstdio> using namespace std; const int maxn = 1000001; struct PPoint {
double x, y;
}; double Area(PPoint p0, PPoint p1, PPoint p2) {
double area = 0;
area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y
- p0.x * p2.y;
return area / 2; // 另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针。相除后就抵消了。 } int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n); PPoint p0,p1,p2; scanf("%lf %lf",&p0.x,&p0.y);
scanf("%lf %lf",&p1.x,&p1.y); double sum_area = 0;
double sum_x = 0;
double sum_y = 0; int i;
for(i = 2 ; i < n ; ++i){
scanf("%lf %lf",&p2.x,&p2.y); double area = Area(p0,p1,p2);
sum_area += area;
sum_x += (p0.x + p1.x+ p2.x)*area;
sum_y += (p0.y + p1.y + p2.y)*area;
p1 = p2;
} printf("%.2lf %.2lf\n",sum_x/(sum_area*3),sum_y/(sum_area*3));
} return 0;
}
(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)的更多相关文章
- Lifting the Stone(hdu1115)多边形的重心
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- POJ 1385 Lifting the Stone (多边形的重心)
Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...
- HDU1115--Lifting the Stone(求凸多边形的重心)
Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...
- hdu 2036:改革春风吹满地(叉积求凸多边形面积)
改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone 多边形的重心
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone (数学几何)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone
题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...
- poj 1115 Lifting the Stone 计算多边形的中心
Lifting the Stone Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- uva 357 Let Me Count The Ways(01背包)
题目连接:357 - Let Me Count The Ways 题目大意:有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 解题思路:和uva674是一 ...
- javascript --- 事件托付
javascript 之 事件托付 长处:1.提高性能(仅仅须要对父级进行操作,子节点相同会拥有其相关属性和方法) 2.对于新加入的事件.也让其拥有父级事件的属性 <!doctype html& ...
- 程序猿的量化交易之路(29)--Cointrader之Tick实体(16)
转载需注明出处:http://blog.csdn.net/minimicall,http://cloudtrade.top Tick:什么是Tick,在交易平台中很常见,事实上就 单笔交易时某仅仅证券 ...
- 为Delphi程序增加UAC功能(每个步骤都很详细)
相关资料:http://bbs.csdn.net/topics/320071356# 操作方法: 在Source\VCL目录下应该有这样两个文件sample.manifest和WindowsXP.rc ...
- [Windows Phone]AnimationHelper管理分散的Storyboard
问题描述: 在Windows Phone开发时候,可能存在这样的问题: 某一个控件需要一个特定的展现(这里假定是一个特定动画),那么我们会这么解决这个问题呢? 打开Blend,根据需求需求给控件添加动 ...
- java学习笔记01--数据类型
java学习笔记01--数据类型 java数据类型划分 分为两大类型: 1)基本数据类型:类似于普通的值. 2)引用数据类型:传递的是内存的地址. 浮点类型实际上就是表示小数. java基本数据类型 ...
- 开源mp3播放器--madplay 编译和移植 简记
madplay是一款开源的mp3播放器. http://madplay.sourcearchive.com/ 下面简单记录一下madplay的编译与移植到ARM开发板上的过程 一.编译x86版本的ma ...
- DAO设计模式实现数据库的增删改查(进一步封装JDBC工具类)
DAO设计模式实现数据库的增删改查(进一步封装JDBC工具类) 一.DAO模式简介 DAO即Data Access Object,数据访问接口.数据访问:故名思义就是与数据库打交道.夹在业务逻辑与数据 ...
- Servlet:通过初始参数实现权限访问某个文件、页面
目录结构 src 目录下com.xieyuan包MyServlet.java文件(Servlet文件) package com.xieyuan; import java.awt.Color; impo ...
- hdu1428之spfa+dfs
漫步校园 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...