(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)
题目:
Lifting the Stone |
| Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
| Total Submission(s): 168 Accepted Submission(s): 98 |
|
Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
|
|
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
|
|
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
|
|
Sample Input
2 |
|
Sample Output
0.00 0.00 |
|
Source
Central Europe 1999
|
|
Recommend
Eddy
|
题目分析:
求凸多边形的重心,简单题。
1、 累加和求重心
设平面上有N 个离散数据点( xi , yi ) ( i = 1, 2, ., n) , 其
多边形重心G( . x1, . y1) 为:

这是求多边形最简单直观的方法。能够直接利用离散数
据点的x, y坐标就能求图形重心。
可是缺陷在于没有对离散
数据点所围图形做不论什么处理和分析,精度不够。
2、 算法一:在讲该算法时,先要明确以下几个定理。
定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。它的重心坐标为:
xg = (x1+x2+x3) / 3 ; yg = (y1+y2+y3) / 3 ;
定理2 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。
该三角形的面积为:
S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;
△A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。
另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
原理:将多边形划分成n个小区域, 每一个小区域面积为σi ,重心为Gi ( . xi , . yi ) ,利用求平面薄板重心公式把积分变
成累加和:


由前面所提出的原理和数学定理能够得出求离散数据点所围多边形的一般重心公式:以Ai ( xi , yi ) ( i = 1, 2, ., n) 为顶点的随意N边形A1A2 .An ,将它划 分成N - 2个三角形(如图1) 。每一个三角形的重心为Gi ( . xi , . yi ) ,面积为σi。那么多边形的重心坐标G( .x2, .y2) 为:


图1 多边形分解
代码例如以下:
#include <iostream>
#include <cstdio> using namespace std; const int maxn = 1000001; struct PPoint {
double x, y;
}; double Area(PPoint p0, PPoint p1, PPoint p2) {
double area = 0;
area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y
- p0.x * p2.y;
return area / 2; // 另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针。相除后就抵消了。 } int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n); PPoint p0,p1,p2; scanf("%lf %lf",&p0.x,&p0.y);
scanf("%lf %lf",&p1.x,&p1.y); double sum_area = 0;
double sum_x = 0;
double sum_y = 0; int i;
for(i = 2 ; i < n ; ++i){
scanf("%lf %lf",&p2.x,&p2.y); double area = Area(p0,p1,p2);
sum_area += area;
sum_x += (p0.x + p1.x+ p2.x)*area;
sum_y += (p0.y + p1.y + p2.y)*area;
p1 = p2;
} printf("%.2lf %.2lf\n",sum_x/(sum_area*3),sum_y/(sum_area*3));
} return 0;
}
(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)的更多相关文章
- Lifting the Stone(hdu1115)多边形的重心
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- POJ 1385 Lifting the Stone (多边形的重心)
Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...
- HDU1115--Lifting the Stone(求凸多边形的重心)
Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...
- hdu 2036:改革春风吹满地(叉积求凸多边形面积)
改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone 多边形的重心
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone (数学几何)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone
题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...
- poj 1115 Lifting the Stone 计算多边形的中心
Lifting the Stone Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- ubuntu安装iscsi
ubuntu安装iscsi target端:apt-get install iscsitarget ubuntu安装iscsi initiator端:apt-get install open-iscs ...
- Windows环境下访问NFS(33篇Storage的文章)
Windows环境下访问NFS 使用Solaris时,如果想在两台Solaris之间共享数据,那么你想到的最省事.最方便的方法肯定是nfs.但是现在的学生们的桌面,估计99%以上都是Windows,W ...
- 暂停和屏蔽右键网页中的Flash
如何暂停网页中的Flash?原理很简单,就是屏蔽Flash的消息即可.屏蔽右键也可以通过此方法 直接贴代码吧,加了注释,很容易就能懂了 新建工程,加一个WebBrowser,再加两个按钮.Flash ...
- [读书笔记]设计原本[The Design of Design]
第1章 设计之命题 1.设计首先诞生于脑海里,再慢慢逐步成形(实现) 2.好的设计具有概念完整性:统一.经济.清晰.优雅.利落.漂亮... 第2章 工程师怎样进行设计思维——理性模型 1.有序模型的有 ...
- 与众不同 windows phone (20) - Device(设备)之位置服务(GPS 定位), FM 收音机, 麦克风, 震动器
原文:与众不同 windows phone (20) - Device(设备)之位置服务(GPS 定位), FM 收音机, 麦克风, 震动器 [索引页][源码下载] 与众不同 windows phon ...
- 深入 理解 Statement 和 PreparedStatement
一.使用Statement而不是PreparedStatement对象 JDBC驱动的最佳化是基于使用的是什么功能. 选择PreparedStatement还是Statement取决于你要怎么使用它们 ...
- 常用的JQuery数字类型验证正则表达式
var regexEnum = { intege:"^-?[1-9]//d*$", //整数 intege1:"^[1-9]//d*$", ...
- 【PostgreSQL】PostgreSQL语法
在阅读的过程中有不论什么问题.欢迎一起交流 邮箱:1494713801@qq.com QQ:1494713801 一.PostgreSQL时间类型转换 --时间类型转成字符类型 select t ...
- 在WIN7系统的笔记本上建立WIFI热点
成功与否的关键在于你是否依照顺序运行: 前置条件:右键"我的电脑"--"属性"--"设备管理器"--"网络适配 ...
- 使用Swing实现简易而不简单的文档编辑器
本文通过Swing来实现文档简易而不简单的文档编辑器,该文档编辑器的功能包括: 设置字体样式:粗体,斜体,下划线,可扩展 设置字体:宋体,黑体,可扩展 设置字号:12,14,18,20,30,40, ...