poj1001求幂
这道题目是实质上就是高精度的乘法,虽然是带小数点的数多少次幂,但是开始我们需要将它变为整数进行求幂,然后再加上小数点,然后要考虑前导0,有效数位问题,做的时候要十分的小心
#include<iostream>
#include<string>
#include<cmath>
using namespace std; int origin[]; //输入不会超过6位
int num[]; //计算的结果
int backnum[]; int main()
{
string decim;
int ep,i,j,k,numpos,value,resid,count;
long fpos,efpos; //小数位和有效数位
int pointflag;
while(cin>>decim>>ep)
{
memset(origin,,sizeof(origin));
memset(num,,sizeof(num));
memset(backnum,,sizeof(backnum));
fpos=;numpos=,count=;
//将输入的数从后往前存到int数组中
for(i=decim.size()-;i>=;i--)
{
//记录第一个不是0的位置
if(!count&&decim[i]!='')
{
efpos=i;count=;
}
//记录小数点出现的位置
if(decim[i]=='.') fpos=decim.size()--i;
else{
//如果是数字,就存下来
origin[numpos]=decim[i]-'';
numpos++;
}
}
efpos=fpos-(decim.size()--efpos);
num[]=;
//进行ep次大整数乘法
for(int x=;x<ep;x++)
{
for(i=;i<;i++)
{
resid=;
for(j=;j<;j++)
{
value=num[j]*origin[i]+resid;
backnum[j+i]+=(value%);
if(backnum[j+i]>=)
{
backnum[j+i]=backnum[j+i]%;
backnum[j+i+]++;
}
resid=value/; }
//if(value==0&&resid==0) break;
}
memcpy(num,backnum,sizeof(num));
memset(backnum,,sizeof(backnum));
}
pointflag=;
fpos=fpos*ep;
efpos=efpos*ep;
//忽略前导0
for(i=;i>=;i--) if(num[i]) break;
//判断忽略前导0后,导致实际位数不够的时候填充0的情况
//即 0.4321 20
if(i+<fpos)
{
cout<<".";
for(int z=;z<fpos-i-;z++)
{
cout<<"";
}
efpos=efpos-(fpos-i-);
pointflag=;
}
for(j=i;j>=;j--)
{ if(j+==fpos)
{
if(efpos<=) break;
cout<<".";
pointflag=;
}
if(pointflag) pointflag++;
cout<<num[j];
//如果小数后的位数超过了有效位数,停止:即忽略后0
if(pointflag>(efpos)) break;
}
cout<<endl;
}
return ;
}
poj1001求幂的更多相关文章
- C# 高精度求幂 poj1001
高精度求幂 public static char[] exponentiation(string a,int r) { ]; string b = ""; string c = a ...
- 算法:求幂(python版)
分别用迭代方法和递归方法实现求幂迭代方法的时间复杂度为O(n),空间复杂度为O(1)递归方法1的时间复杂度为O(logn),空间复杂度为O(logn)递归方法2的时间复杂度为O(n),空间复杂度为O( ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
- 快速求幂(Quick Exponentiation)
接触ACM没几天,向各路大神求教,听说ACM主要是研究算法,所以便开始了苦逼的算法学习之路.话不多说,RT所示,学习快速求幂. 在头文件<math.h>或是<cmath>中,d ...
- 高效求幂取余 算法,复杂度 log(n)
做TopCoder SRM 576 D2 L3 题目时,程序有个地方需要对一个数大量求幂并取余,导致程序运行时间很长,看了Editoral之后,发现一个超级高效的求幂并取余的算法,之前做System ...
- NYOJ--102--次方求模(快速求幂取模)
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...
- [leetcode]50. Pow(x, n)求幂
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Ou ...
- 求幂运算、多项式乘法及Horner法则的应用
一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: private static long pow(int x, int n){ if(n == 0) return 1; ...
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
随机推荐
- windows已安装solr
下载地址:http://archive.apache.org/dist/lucene/solr/ 操作环境: Win7,Tomcat6, Solr4.3, Jdk6 下载solr4.3的包,解压到本 ...
- HDU 3376 && 2686 方格取数 最大和 费用流裸题
题意: 1.一个人从[1,1] ->[n,n] ->[1,1] 2.仅仅能走最短路 3.走过的点不能再走 问最大和. 对每一个点拆点限流为1就可以满足3. 费用流流量为2满足1 最大费用流 ...
- Oracle推断领域包括中国
假设你要推断领域包括中国.有一个简单的方法. SQL> drop table test purge; SQL> create table test as select * from dba ...
- 访问Ice-Pick Lodge:假设公众筹款网站Kickstarter在成功
Xsolla非常高兴採訪了来自莫斯科的工作室 Ice-Pick Lodge的Golubeva.数天前,该公司已成功在Kickstarter上募集资金,创造出最知名的游戏"Pathologic ...
- 进程切换switch_to宏第三个参数分析
进程切换一般都涉及三个进程,如进程a切换成进程b,b开始执行,但是当a恢复执行的时候往往是通过一个进程c,而不是进程b. 注意switch_to的调用: switch_to(prev,next,pre ...
- The Swift Programming Language-官方教程精译Swift(1)小试牛刀
通常来说,编程语言教程中的第一个程序应该在屏幕上打印“Hello, world”.在 Swift 中,可以用一行代码实现: println("hello, world") 如果你 ...
- Ionic项目中使用极光推送-android
对于Ionic项目中使用消息推送服务,Ionic官方提供了ngCordova项目,这个里面的提供了用angularjs封装好的消息推送服务(官方文档),使用的是GitHub上的 PushPlugin ...
- Linq to Sql : 三种事务处理方式
原文:Linq to Sql : 三种事务处理方式 Linq to SQL支持三种事务处理模型:显式本地事务.显式可分发事务.隐式事务.(from MSDN: 事务 (LINQ to SQL)).M ...
- 一个简单的创建dom的函数
var regName = /^(div|a|p|ul|li|input|select|document|body|iframe)$/;function createDom(name, obj) { ...
- thinkphp 支付宝错误 Class 'Think' not found
Class 'Think' not found D:\www\DonatePlatform\ThinkPHP\Extend\Vendor\alipay\lib\alipay_submit.class. ...