这道题目是实质上就是高精度的乘法,虽然是带小数点的数多少次幂,但是开始我们需要将它变为整数进行求幂,然后再加上小数点,然后要考虑前导0,有效数位问题,做的时候要十分的小心

#include<iostream>
#include<string>
#include<cmath>
using namespace std; int origin[]; //输入不会超过6位
int num[]; //计算的结果
int backnum[]; int main()
{
string decim;
int ep,i,j,k,numpos,value,resid,count;
long fpos,efpos; //小数位和有效数位
int pointflag;
while(cin>>decim>>ep)
{
memset(origin,,sizeof(origin));
memset(num,,sizeof(num));
memset(backnum,,sizeof(backnum));
fpos=;numpos=,count=;
//将输入的数从后往前存到int数组中
for(i=decim.size()-;i>=;i--)
{
//记录第一个不是0的位置
if(!count&&decim[i]!='')
{
efpos=i;count=;
}
//记录小数点出现的位置
if(decim[i]=='.') fpos=decim.size()--i;
else{
//如果是数字,就存下来
origin[numpos]=decim[i]-'';
numpos++;
}
}
efpos=fpos-(decim.size()--efpos);
num[]=;
//进行ep次大整数乘法
for(int x=;x<ep;x++)
{
for(i=;i<;i++)
{
resid=;
for(j=;j<;j++)
{
value=num[j]*origin[i]+resid;
backnum[j+i]+=(value%);
if(backnum[j+i]>=)
{
backnum[j+i]=backnum[j+i]%;
backnum[j+i+]++;
}
resid=value/; }
//if(value==0&&resid==0) break;
}
memcpy(num,backnum,sizeof(num));
memset(backnum,,sizeof(backnum));
}
pointflag=;
fpos=fpos*ep;
efpos=efpos*ep;
//忽略前导0
for(i=;i>=;i--) if(num[i]) break;
//判断忽略前导0后,导致实际位数不够的时候填充0的情况
//即 0.4321 20
if(i+<fpos)
{
cout<<".";
for(int z=;z<fpos-i-;z++)
{
cout<<"";
}
efpos=efpos-(fpos-i-);
pointflag=;
}
for(j=i;j>=;j--)
{ if(j+==fpos)
{
if(efpos<=) break;
cout<<".";
pointflag=;
}
if(pointflag) pointflag++;
cout<<num[j];
//如果小数后的位数超过了有效位数,停止:即忽略后0
if(pointflag>(efpos)) break;
}
cout<<endl;
}
return ;
}

poj1001求幂的更多相关文章

  1. C# 高精度求幂 poj1001

    高精度求幂 public static char[] exponentiation(string a,int r) { ]; string b = ""; string c = a ...

  2. 算法:求幂(python版)

    分别用迭代方法和递归方法实现求幂迭代方法的时间复杂度为O(n),空间复杂度为O(1)递归方法1的时间复杂度为O(logn),空间复杂度为O(logn)递归方法2的时间复杂度为O(n),空间复杂度为O( ...

  3. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  4. 快速求幂(Quick Exponentiation)

    接触ACM没几天,向各路大神求教,听说ACM主要是研究算法,所以便开始了苦逼的算法学习之路.话不多说,RT所示,学习快速求幂. 在头文件<math.h>或是<cmath>中,d ...

  5. 高效求幂取余 算法,复杂度 log(n)

    做TopCoder SRM 576 D2 L3 题目时,程序有个地方需要对一个数大量求幂并取余,导致程序运行时间很长,看了Editoral之后,发现一个超级高效的求幂并取余的算法,之前做System ...

  6. NYOJ--102--次方求模(快速求幂取模)

    次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...

  7. [leetcode]50. Pow(x, n)求幂

    Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Ou ...

  8. 求幂运算、多项式乘法及Horner法则的应用

    一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: private static long pow(int x, int n){ if(n == 0) return 1; ...

  9. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

随机推荐

  1. 算法 & 分析 (收集)

    算法一:快速排序算法 快速排序是由东尼·霍尔所发展的一种排序算法.在平均状况下,排序 n 个项目要Ο(n log n)次比较.在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见.事实上,快速排序通 ...

  2. HDU 2544-最短路(最短路spfa)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. MVC02

    1.在EF5.0修改实体的时候,出现“对一个或多个实体的验证失败.有关详细信息,请参见“EntityValidationErrors”属性这个错误db.Configuration.ValidateOn ...

  4. 设计模式组合模式(Composite)精华

    23种子GOF设计模式一般分为三类:创建模式.结构模型.行为模式. 创建模式抽象的实例,他们帮助如何创建一个系统独立.这是一个这些对象和陈述的组合. 创建使用继承类的类架构更改实例.的对象类型模型的建 ...

  5. 使用Jenkins来构建Docker容器

    使用Jenkins来构建Docker容器(Ubuntu 14.04) 当开发更新了代码,提交到Gitlab上,然后由测试人员触发Jenkins,于是一个应用的新版本就被构建了.听起来貌似很简单,dua ...

  6. C# 复习(1) 委托与事件

    委托定义顺序 1. 声明一个委托 2.定义一个委托变量 3. 委托变量的初始化或者给委托变量绑定一个方法 4.调用委托 事件:事件是对委托的封装. 事件只能在创建事件的类的内部调用. public c ...

  7. 为网上流行论点“UIAutomator不能通过中文文本查找控件”正名

    1. 问题描述和起因 相信大家学习UIAutomator一开始的时候必然会看过一下这篇文章. Android自动化测试(UiAutomator)简要介绍 因为你在百度输入UIAutomator搜索的时 ...

  8. 【android】WebView缓存数据收集

    Android WebView 缓存 Android高手进阶教程(二十四)之---Android WebView的缓存!!! Android webView 缓存 Cache + HTML5离线功能 ...

  9. Linux忘记rootpassword

    我们常常会碰到忘记rootpassword的情况,以下是解决之道,  此方法使用绝大多数的Linux发行版:  1. 首先进入grub  2. 在须要编辑的入口处,按下e,在quite后增加     ...

  10. MVC+Jqgrid

    基于MVC+Jqgrid的列表页面 2014-12-08 12:01 by 刘尼玛, 1583 阅读, 20 评论, 收藏, 编辑 一.前言 “尼玛哥,上周你教我改了下OA系统UI,黄总看了很满意呀. ...