TensorFlow反向传播算法实现
TensorFlow反向传播算法实现
反向传播(BPN)算法是神经网络中研究最多、使用最多的算法之一,用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重。
学习 BPN 算法可以分成以下两个过程:
- 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层。在输出层,计算误差和损失函数。
- 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度。接下来用梯度更新权重。
这两个过程重复迭代直到收敛。
前期准备
首先给网络提供 M 个训练对(X,Y),X 为输入,Y 为期望的输出。输入通过激活函数 g(h) 和隐藏层传播到输出层。输出 Yhat 是网络的输出,得到 error=Y-Yhat。其损失函数 J(W) 如下:

其中,i 取遍所有输出层的神经元(1 到 N)。然后可以使用 J(W) 的梯度并使用链式法则求导,来计算连接第 i 个输出层神经元到第 j 个隐藏层神经元的权重 Wij 的变化:

这里,Oj 是隐藏层神经元的输出,h 表示隐藏层的输入值。这很容易理解,但现在怎么更新连接第 n 个隐藏层的神经元 k 到第 n+1 个隐藏层的神经元 j
的权值 Wjk?过程是相同的:将使用损失函数的梯度和链式法则求导,但这次计算 Wjk:

现在已经有方程了,看看如何在 TensorFlow 中做到这一点。在这里,还是使用 MNIST 数据集(http://yann.lecun.com/exdb/MNIST/)。
具体实现过程
现在开始使用反向传播算法:
- 导入模块:

- 加载数据集,通过设置 one_hot=True 来使用独热编码标签:

- 定义超参数和其他常量。这里,每个手写数字的尺寸是 28×28=784 像素。数据集被分为
10 类,以 0 到 9 之间的数字表示。这两点是固定的。学习率、最大迭代周期数、每次批量训练的批量大小以及隐藏层中的神经元数量都是超参数。可以通过调整这些超参数,看看是如何影响网络表现的:

- 需要 Sigmoid 函数的导数来进行权重更新,所以定义:

- 为训练数据创建占位符:

- 创建模型:

- 定义权重和偏置变量:

- 为正向传播、误差、梯度和更新计算创建计算图:

- 定义计算精度 accuracy 的操作:

- 初始化变量:

- 执行图:

- 结果如下:

解读分析
在这里,训练网络时的批量大小为 10,如果增加批量的值,网络性能就会下降。另外,需要在测试数据集上检测训练好的网络的精度,这里测试数据集的大小是 1000。
单隐藏层多层感知机在训练数据集上的准确率为 84.45,在测试数据集上的准确率为 92.1。这是好的,但不够好。MNIST 数据集被用作机器学习中分类问题的基准。接下来,看一下如何使用 TensorFlow 的内置优化器影响网络性能。
TensorFlow反向传播算法实现的更多相关文章
- [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...
- TensorFlow从0到1之TensorFlow实现反向传播算法(21)
反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...
- 机器学习 —— 基础整理(七)前馈神经网络的BP反向传播算法步骤整理
这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使 ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
- 稀疏自动编码之反向传播算法(BP)
假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项( ...
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
- 卷积神经网络(CNN)反向传播算法
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...
- 循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...
- LSTM模型与前向反向传播算法
在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long ...
随机推荐
- SpringCloud之Ribbon负载均衡策略
Spring Cloud 微服务架构学习记录与示例 一.认识Ribbon 首先咱们需要认识下负载均衡,一般分为服务器端负载和客户端负载均衡. 服务器端负载均衡:比如Nginx.F5,请求达到服务器后由 ...
- hdu3715 二分+2sat+建图
题意: 给你一个递归公式,每多一层就多一个限制,问你最多能递归多少层. 思路: 先分析每一层的限制 x[a[i]] + x[b[i]] != c[i],这里面x[] = 0,1, ...
- Tomcat PUT方法任意文件上传(CVE-2017-12615)
目录 漏洞复现: 漏洞利用工具: 漏洞环境:当 Tomcat运行在Windows操作系统,且启用了HTTP PUT请求方法(例如,将 readonly 初始化参数由默认值设置为 false),攻击者将 ...
- node-mongo-服务器封装
分为三个文件 mongo.js基本的封装了下mongo数据库操作 workmongo.js 里面有路由和解析操作(可以根据具体业务进行扩充) mainmongo.js 服务器相关 调用例子: 查询数据 ...
- Portswigger web security academy:Clickjacking (UI redressing)
Portswigger web security academy:Clickjacking (UI redressing) 目录 Portswigger web security academy:Cl ...
- Java并发容器篇
作者:汤圆 个人博客:javalover.cc 前言 断断续续一个多月,也写了十几篇原创文章,感觉真的很不一样: 不能说技术有很大的进步,但是想法确实跟以前有所不同: 还没开始的时候,想着要学的东西太 ...
- 【JavaScript】Leetcode每日一题-青蛙过河
[JavaScript]Leetcode每日一题-青蛙过河 [题目描述] 一只青蛙想要过河. 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有). 青蛙可以跳上石子 ...
- 2 IDEA——新建一个java项目
快捷键 public class Hello { // psvm public static void main(String[] args) { // sout System.out.println ...
- idea中properties配置文件没有代码提示及代码高亮问题解决方案
更多精彩关注微信公众号 1.解决properties文件没有代码提示问题:首先,单击项目结构按钮,如下图: 然后,给项目添加Spring依赖支持,如下图: 2.解决代码不高亮问题: 代码不高亮 ...
- 数据人必读!玩转数据可视化用这个就够了——高德LOCA API 2.0升级来袭!
引言 "一图胜千言",大数据时代来临,数据与人们生活密切相关.复杂难懂且体量庞大的数据给人的感觉总是冷冰冰的,让人难以获取到重点信息,也找不出规律和特征,数据价值发挥不出来.空间数 ...