介绍

该文提出一种基于深度学习的特征描述方法,并且对尺度变化、图像旋转、透射变换、非刚性变形、光照变化等具有很好的鲁棒性。该算法的整体思想并不复杂,使用孪生网络从图块中提取特征信息(得到一个128维的特征向量),并且使用L2距离来描述特征之间的差异,目标是让匹配图块特征之间的距离缩短,让不匹配图块特征之间的距离增大

数据集及模型结构

  1. 数据集

    论文使用的是一个叫做MVS的建筑物数据集,包含了1.5M张\(64 \times 64\)张的灰度图来自500K个3D points。

  2. 网络的结构:

3.损失函数:

\[l\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\{\begin{array}{cc}
\left\|D\left(\mathbf{x}_{1}\right)-D\left(\mathbf{x}_{2}\right)\right\|_{2}, & p_{1}=p_{2} \\
\max \left(0, C-\left\|D\left(\mathbf{x}_{1}\right)-D\left(\mathbf{x}_{2}\right)\right\|_{2}\right), & p_{1} \neq p_{2}
\end{array}\right.
\]

解释一下,C是一个最小距离阈值;两个图像块$ x_1, x_2$,如果它们来自同一个3D point \(pi\),则使用(1)的上半部分计算损失函数,否则使用下半部分计算损失函数。

  1. Mining

论文作者提出了一个训练模型的创新方法:

随着训练的进行,随机选择的负向样本之间的距离很容易就超过阈值C,使得损失变成0,无法有效的对网络进行训练了。也就是说,随机选择的负向样本太简单了,他们本身之间的距离就很大,无法有效的训练网络。因此作者希望能够从数据集中寻找到“困难”的样本,什么才算是困难样本呢,对于负向样本而言,就是他们之间的距离很小,非常相似,但却不属于一个3D点;对于正向样本而言,就是他们属于同一个3D点,但特征之间的距离却很大。这样的样本对模型训练有很好的促进作用。为了实现这个目标,作者先随机采样了一个包含\(s_n\) 个点的负样本集,然后经过一次正向的运算(网络正向传播)并计算损失,然后仅保留其中\(s_n^H\)个点构成的困难样本子集,并将这部分的损失反向传播回去,对网络参数进行训练。对于正向样本也采用同样的策略,来挖掘困难样本。

结果:

Last

这个PR curves应该与是某个指标有关,以后遇到了再查阅。

Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记的更多相关文章

  1. Learning local feature descriptors with triplets and shallow convolutional neural networks 论文阅读笔记

    题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Cont ...

  2. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  3. 论文学习 :Learning a Deep Convolutional Network for Image Super-Resolution 2014

    (Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方 ...

  4. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

  5. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  6. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  7. [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks

    [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...

  8. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  9. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

随机推荐

  1. 写在LeetCode刷题600题

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 从2015年9月刷题至今,我终于在LeetCode刷够600道题了.从刚开始的Java语 ...

  2. 【LeetCode】617. Merge Two Binary Trees 解题报告

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcod ...

  3. 一图搞懂Web应用的单点登录

    单点登录即Signle Sign On,简称SSO.其解决的是用户在多个站点之间跳转时需要频繁登录的问题,比如用户登录了天猫,就应该无需再使用账号登录淘宝,它们之间是可以相互信任的,应该自动同步登录状 ...

  4. Not All Samples Are Created Equal: Deep Learning with Importance Sampling

    目录 概 主要内容 "代码" Katharopoulos A, Fleuret F. Not All Samples Are Created Equal: Deep Learnin ...

  5. 编写Java程序,使用菜单组件制作一个记事本编辑器

    返回本章节 返回作业目录 需求说明: 使用菜单组件制作一个记事本编辑器 实现思路: 创建记事本菜单工具栏JMenuBar. 创建多个菜单条JMenu. 创建多个菜单项JMenuItem. 将菜单添加至 ...

  6. SpringBoot集成Actuator端点配置

    1.说明 Actuator端点可以监控应用程序并与之交互. Spring Boot包括许多内置的端点, 比如health端点提供基本的应用程序运行状况信息, 并允许添加自定义端点. 可以控制每个单独的 ...

  7. .NET 云原生架构师训练营(责任链模式)--学习笔记

    目录 责任链模式 源码 责任链模式 职责链上的处理者负责处理请求,客户只需要将请求发送到职责链上即可,无需关心请求的处理细节和请求的传递,所以职责链将请求的发送者和请求的处理者解耦了 何时使用:在处理 ...

  8. 官网下载mysql的方法

    mysql官网    http://www.mysql.com/ 方法一:    (1)登陆官网 (2)把页面拉到最底部,点击Downloads(GA) 下边的MySQL Community Serv ...

  9. Java Date 类型比较

    //某时间Date time = tRemind.getTime();//现在时间Date now = new Date();//结果大于0则是现在时间大于某时间//结果等于0则为刚好相等//结果小于 ...

  10. Standalone集群搭建和Spark应用监控

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815920501530034696/ 承接上一篇文档<Spark词频前十的统计练习> Spark on ...