介绍

该文提出一种基于深度学习的特征描述方法,并且对尺度变化、图像旋转、透射变换、非刚性变形、光照变化等具有很好的鲁棒性。该算法的整体思想并不复杂,使用孪生网络从图块中提取特征信息(得到一个128维的特征向量),并且使用L2距离来描述特征之间的差异,目标是让匹配图块特征之间的距离缩短,让不匹配图块特征之间的距离增大

数据集及模型结构

  1. 数据集

    论文使用的是一个叫做MVS的建筑物数据集,包含了1.5M张\(64 \times 64\)张的灰度图来自500K个3D points。

  2. 网络的结构:

3.损失函数:

\[l\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\{\begin{array}{cc}
\left\|D\left(\mathbf{x}_{1}\right)-D\left(\mathbf{x}_{2}\right)\right\|_{2}, & p_{1}=p_{2} \\
\max \left(0, C-\left\|D\left(\mathbf{x}_{1}\right)-D\left(\mathbf{x}_{2}\right)\right\|_{2}\right), & p_{1} \neq p_{2}
\end{array}\right.
\]

解释一下,C是一个最小距离阈值;两个图像块$ x_1, x_2$,如果它们来自同一个3D point \(pi\),则使用(1)的上半部分计算损失函数,否则使用下半部分计算损失函数。

  1. Mining

论文作者提出了一个训练模型的创新方法:

随着训练的进行,随机选择的负向样本之间的距离很容易就超过阈值C,使得损失变成0,无法有效的对网络进行训练了。也就是说,随机选择的负向样本太简单了,他们本身之间的距离就很大,无法有效的训练网络。因此作者希望能够从数据集中寻找到“困难”的样本,什么才算是困难样本呢,对于负向样本而言,就是他们之间的距离很小,非常相似,但却不属于一个3D点;对于正向样本而言,就是他们属于同一个3D点,但特征之间的距离却很大。这样的样本对模型训练有很好的促进作用。为了实现这个目标,作者先随机采样了一个包含\(s_n\) 个点的负样本集,然后经过一次正向的运算(网络正向传播)并计算损失,然后仅保留其中\(s_n^H\)个点构成的困难样本子集,并将这部分的损失反向传播回去,对网络参数进行训练。对于正向样本也采用同样的策略,来挖掘困难样本。

结果:

Last

这个PR curves应该与是某个指标有关,以后遇到了再查阅。

Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记的更多相关文章

  1. Learning local feature descriptors with triplets and shallow convolutional neural networks 论文阅读笔记

    题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Cont ...

  2. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  3. 论文学习 :Learning a Deep Convolutional Network for Image Super-Resolution 2014

    (Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方 ...

  4. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

  5. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  6. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  7. [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks

    [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...

  8. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  9. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

随机推荐

  1. 【LeetCode】434. Number of Segments in a String 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 统计 正则表达式 字符串分割 日期 题目地址:htt ...

  2. spoj-ORDERS - Ordering the Soldiers

    ORDERS - Ordering the Soldiers As you are probably well aware, in Byteland it is always the military ...

  3. 3998 - Prime k-tuple

    {p1,..., pk : p1 < p2 <...< pk} is called a prime k -tuple of distance s if p1, p2,..., pk ...

  4. github项目托管方式(看项目自身是否自带有 .git)

    一.本地仓库和远程仓库建立联系 方式一:项目自身带有 .git文件的[自身就是一个本地仓库的](这里咱以vue-cli3项目为例) 1.创建自带.git本地仓库:创建一个叫 my-vue 的项目 2. ...

  5. 第四十三个知识点:为AES描述一些基础的(可能无效)的对抗侧信道攻击的防御

    第四十三个知识点:为AES描述一些基础的(可能无效)的对抗侧信道攻击的防御 原文地址:http://bristolcrypto.blogspot.com/2015/07/52-things-numbe ...

  6. Git_同一个本地仓库上传到不同的远端仓库(github、gitee)

    一.背景 github访问.推拉代码都太慢了,于是想把github上面的项目全部迁移到gitee(码云)上,但又不想放弃在github上维护项目,于是想同时维护两个远端仓库 二.准备工作 1.创建相同 ...

  7. Word2010制作电子印章

    原文链接: https://www.toutiao.com/i6488971642788643341/ 选择"插入"选项卡,"插图"功能组,"形状&q ...

  8. JSP页面中最常使用的脚本元素

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513082449755374093/ 前面简单说了一个<JSP页面实际上就是Servlet>,接下来说 ...

  9. RootersCTF2019 I ♥ Flask

    最近也是一直在做ssti方面的题目,我发现了两款比较好用的工具,一个是arjun(用来探测参数),另一个是Tplmap(用来探测ssti漏洞),我们这里以一道题目为例来演示一下 题目 我们拿到题目 分 ...

  10. [流畅的Python]第一章数据模型

    这些来自同一家出版社的动物书 像是计算机科学界一盏盏指路明灯 余幼时 初试读 学浅 以为之晦涩难懂 像是老学究咬文嚼字 现在看起来还有些有趣 其实理工男大多都很有趣 这一章介绍了 怎么样去视线一个带有 ...