Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记
介绍
该文提出一种基于深度学习的特征描述方法,并且对尺度变化、图像旋转、透射变换、非刚性变形、光照变化等具有很好的鲁棒性。该算法的整体思想并不复杂,使用孪生网络从图块中提取特征信息(得到一个128维的特征向量),并且使用L2距离来描述特征之间的差异,目标是让匹配图块特征之间的距离缩短,让不匹配图块特征之间的距离增大。
数据集及模型结构
数据集
论文使用的是一个叫做MVS的建筑物数据集,包含了1.5M张\(64 \times 64\)张的灰度图来自500K个3D points。
网络的结构:


3.损失函数:
\left\|D\left(\mathbf{x}_{1}\right)-D\left(\mathbf{x}_{2}\right)\right\|_{2}, & p_{1}=p_{2} \\
\max \left(0, C-\left\|D\left(\mathbf{x}_{1}\right)-D\left(\mathbf{x}_{2}\right)\right\|_{2}\right), & p_{1} \neq p_{2}
\end{array}\right.
\]
解释一下,C是一个最小距离阈值;两个图像块$ x_1, x_2$,如果它们来自同一个3D point \(pi\),则使用(1)的上半部分计算损失函数,否则使用下半部分计算损失函数。
- Mining
论文作者提出了一个训练模型的创新方法:

随着训练的进行,随机选择的负向样本之间的距离很容易就超过阈值C,使得损失变成0,无法有效的对网络进行训练了。也就是说,随机选择的负向样本太简单了,他们本身之间的距离就很大,无法有效的训练网络。因此作者希望能够从数据集中寻找到“困难”的样本,什么才算是困难样本呢,对于负向样本而言,就是他们之间的距离很小,非常相似,但却不属于一个3D点;对于正向样本而言,就是他们属于同一个3D点,但特征之间的距离却很大。这样的样本对模型训练有很好的促进作用。为了实现这个目标,作者先随机采样了一个包含\(s_n\) 个点的负样本集,然后经过一次正向的运算(网络正向传播)并计算损失,然后仅保留其中\(s_n^H\)个点构成的困难样本子集,并将这部分的损失反向传播回去,对网络参数进行训练。对于正向样本也采用同样的策略,来挖掘困难样本。
结果:

Last
![]() |
![]() |
这个PR curves应该与是某个指标有关,以后遇到了再查阅。 |
|---|
Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记的更多相关文章
- Learning local feature descriptors with triplets and shallow convolutional neural networks 论文阅读笔记
题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Cont ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- 论文学习 :Learning a Deep Convolutional Network for Image Super-Resolution 2014
(Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方 ...
- [论文阅读笔记] node2vec Scalable Feature Learning for Networks
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...
- [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...
- [论文阅读笔记] Structural Deep Network Embedding
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
随机推荐
- 【LeetCode】434. Number of Segments in a String 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 统计 正则表达式 字符串分割 日期 题目地址:htt ...
- spoj-ORDERS - Ordering the Soldiers
ORDERS - Ordering the Soldiers As you are probably well aware, in Byteland it is always the military ...
- 3998 - Prime k-tuple
{p1,..., pk : p1 < p2 <...< pk} is called a prime k -tuple of distance s if p1, p2,..., pk ...
- github项目托管方式(看项目自身是否自带有 .git)
一.本地仓库和远程仓库建立联系 方式一:项目自身带有 .git文件的[自身就是一个本地仓库的](这里咱以vue-cli3项目为例) 1.创建自带.git本地仓库:创建一个叫 my-vue 的项目 2. ...
- 第四十三个知识点:为AES描述一些基础的(可能无效)的对抗侧信道攻击的防御
第四十三个知识点:为AES描述一些基础的(可能无效)的对抗侧信道攻击的防御 原文地址:http://bristolcrypto.blogspot.com/2015/07/52-things-numbe ...
- Git_同一个本地仓库上传到不同的远端仓库(github、gitee)
一.背景 github访问.推拉代码都太慢了,于是想把github上面的项目全部迁移到gitee(码云)上,但又不想放弃在github上维护项目,于是想同时维护两个远端仓库 二.准备工作 1.创建相同 ...
- Word2010制作电子印章
原文链接: https://www.toutiao.com/i6488971642788643341/ 选择"插入"选项卡,"插图"功能组,"形状&q ...
- JSP页面中最常使用的脚本元素
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513082449755374093/ 前面简单说了一个<JSP页面实际上就是Servlet>,接下来说 ...
- RootersCTF2019 I ♥ Flask
最近也是一直在做ssti方面的题目,我发现了两款比较好用的工具,一个是arjun(用来探测参数),另一个是Tplmap(用来探测ssti漏洞),我们这里以一道题目为例来演示一下 题目 我们拿到题目 分 ...
- [流畅的Python]第一章数据模型
这些来自同一家出版社的动物书 像是计算机科学界一盏盏指路明灯 余幼时 初试读 学浅 以为之晦涩难懂 像是老学究咬文嚼字 现在看起来还有些有趣 其实理工男大多都很有趣 这一章介绍了 怎么样去视线一个带有 ...

