【题目链接】

【解析】

好题。

拿到题目首先先看一下它的无解情况是怎么判断的。

然后很明显这个是不存在无解情况的。

因为它的黑点开始都是给定了的,可以理解为一个边界。

而新的变化的黑点不会往外扩张,那么也就意味着边界不会扩大。

边界不会扩大,那么变色过程就会终止。

然后考虑按着题目里的意思来看,你就会发现一个白点变为黑点,始终实在两个横坐标相同的点之间的。

这可以抽象为一根竖线,然后这个时候你发现只要出现了一根水平的线就对答案有贡献了。

那么,你就可以使用一种扫描线的过程。

对于竖线就是扫到上端点就执行单点减的过程,扫到下断点就单点加。

对于横线就直接区间查找一波,等价于寻找与它有交点的竖线个数。

然后就没了,不过坐标可能为负,所以需要离散化。

#include<bits/stdc++.h>
#define int long long
using namespace std;
template<typename T> inline void read(T &x){T f=1;x=0;char ch=getchar();while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}x*=f;}
const int N = 6e5;
int n,xx[N],yy[N],c[N],ans,m1,m2,num;
struct node{int x,y;}a[N];
struct line{int x,y,rx,type;}l[N];
int mp(line x,line y){
if(x.y==y.y) return x.type<y.type;
else return x.y<y.y;
}
int cmp(node x,node y){if(x.y!=y.y)return x.y<y.y; return x.x<y.x;}
int comp(node x,node y){if(x.x!=y.x) return x.x<y.x;return x.y<y.y;}
int lowbit(int x){return x&(-x);}
void change(int x,int val){
for(int i=x;i<=N;i+=lowbit(i)) c[i]+=val;
}
int ask(int x){
int ans=0;
for(int i=x;i;i-=lowbit(i)) ans+=c[i];
return ans;
}
void work(){
sort(a+1,a+n+1,cmp);
for(int i=1;i<n;i++){
if(a[i].y==a[i+1].y){
l[++num].x=a[i].x;l[num].y=a[i].y;
l[num].rx=a[i+1].x;l[num].type=0;
}
}
sort(a+1,a+n+1,comp);
for(int i=1;i<n;i++){
if(a[i].x==a[i+1].x){
l[++num].x=a[i].x;l[num].y=a[i].y;l[num].type=1;
l[++num].x=a[i].x;l[num].y=a[i+1].y;l[num].type=-1;
}
}
sort(l+1,l+num+1,mp);
}
signed main(){
read(n);
for(int i=1;i<=n;i++) read(a[i].x),read(a[i].y),xx[i]=a[i].x,yy[i]=a[i].y;
sort(xx+1,xx+n+1);sort(yy+1,yy+n+1);
m1=unique(xx+1,xx+n+1)-1-xx;
m2=unique(yy+1,yy+n+1)-1-yy;
for(int i=1;i<=n;i++){
int val=lower_bound(xx+1,xx+m1+1,a[i].x)-xx;a[i].x=val;
val=lower_bound(yy+1,yy+m2+1,a[i].y)-yy;a[i].y=val;
}
work();
ans=n;
for(int i=1;i<=num;i++){
if(!l[i].type){
ans+=ask(l[i].rx-1)-ask(l[i].x);
}
else{
change(l[i].x,l[i].type);
}
}
cout<<ans;
return 0;
}

P5816 [CQOI2010]内部白点 题解的更多相关文章

  1. Bzoj1818: [Cqoi2010]内部白点 && Tyvj P2637 内部白点 扫描线,树状数组,离散化

    1818: [Cqoi2010]内部白点 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 704  Solved: 344[Submit][Status] ...

  2. 【BZOJ1818】[CQOI2010]内部白点(树状数组,扫描线)

    [BZOJ1818][CQOI2010]内部白点(树状数组,扫描线) 题面 BZOJ 题解 不难发现\(-1\)就是在搞笑的. 那么对于每一行,我们显然可以处理出来最左和最右的点,那么等价于我们在横着 ...

  3. 【BZOJ1818】[Cqoi2010]内部白点 扫描线+树状数组

    [BZOJ1818][Cqoi2010]内部白点 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变 ...

  4. BZOJ_1818_[Cqoi2010]内部白点 _扫描线+树状数组

    BZOJ_1818_[Cqoi2010]内部白点 _扫描线+树状数组 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟 ...

  5. bzoj 1818 Cqoi2010 内部白点 扫描线

    [Cqoi2010]内部白点 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1126  Solved: 530[Submit][Status][Disc ...

  6. 【BZOJ】1818: [Cqoi2010]内部白点(树状数组+离散+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1818 这一题一开始我就看错了,bzoj的那个绝对值109简直坑人,应该是10^9,我直接写了个暴力. ...

  7. [CQOI2010]内部白点

    Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变黑,直到不存在内部白点为止.你的任务是统计最后网格 ...

  8. 1818: [Cqoi2010]内部白点

    Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1394 Solved: 625 [Submit][Status][Discuss] Descriptio ...

  9. bzoj1818 [Cqoi2010]内部白点

    Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变黑,直到不存在内部白点为止.你的任务是统计最后网格 ...

随机推荐

  1. Your branch and 'origin/master' have diverged, and have 1 and 1 different commits each, respectively

    On branch master Your branch and 'origin/master' have diverged, and have 1 and 1 different commits e ...

  2. 如何查看Oracle SID即instance_name 和 dbname区别

    SID 和  instance_name是一个实例名字db_name 是数据库名字搞清两个概念,数据库和实例 实例:实例是数据库启动时初始化的一组进程和内存结构 数据库:数据库则指的是用户存储数据的一 ...

  3. rman备份出现ORA-19625

    [oracle@hear adump]$ rman target / Recovery Manager: Release 11.2.0.4.0 - Production on Mon Jun 17 0 ...

  4. The Superego 实验四 团队作业1:软件研发团队组建

    项目 内容 课程班级博客链接 班级博客链接 这个作业要求链接 作业要求链接 团队名称 The Superego 团队的课程学习目标 (1)组建团队,建设团队文化,申请开通团队博客 (2)团队之间相互协 ...

  5. 使用kubeadm部署一套高可用k8s集群

    使用kubeadm部署一套高可用k8s集群 有疑问的地方可以看官方文档 准备环境 我的机器如下, 系统为ubuntu20.04, kubernetes版本1.21.0 hostname IP 硬件配置 ...

  6. Jittor实现Conditional GAN

    Jittor实现Conditional GAN Generative Adversarial Nets(GAN)提出了一种新的方法来训练生成模型.然而,GAN对于要生成的图片缺少控制.Conditio ...

  7. 3D惯导Lidar仿真

    3D惯导Lidar仿真 LiDAR-Inertial 3D Plane Simulator 摘要 提出了最*点*面表示的形式化方法,并分析了其在三维室内同步定位与映射中的应用.提出了一个利用最*点*面 ...

  8. 转置卷积Transposed Convolution

    转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...

  9. vue给元素动态绑定样式

    <div :style="{ color: activeColor, fontSize: fontSize + 'px' }"></div> data () ...

  10. 还在担心写的一手烂SQL,送你4款工具

    对于正在运行的mysql,性能如何,参数设置的是否合理,账号设置的是否存在安全隐患,你是否了然于胸呢? 俗话说工欲善其事,必先利其器,定期对你的MYSQL数据库进行一个体检,是保证数据库安全运行的重要 ...