Content

给你 \(q\) 个询问,每次询问 \([l,r]\) 这个区间内满足 \(x=a^p(a>0,p>1)\) 的 \(x\) 的数量。

数据范围:\(1\leqslant q\leqslant 10^5\),\(1\leqslant l\leqslant r\leqslant 10^{18}\)。

Solution

第一次自己独立做出了紫题,特此发篇题解纪念一下。

首先,我们看到数据范围是 \(10^{18}\) 级别的,看到次幂,然后联想到 \(\sqrt{10^{18}}=10^9\),\(\sqrt[3]{10^{18}}=10^6\)。然后我们发现,如果 \(p\geqslant 3\) 的话,貌似可以直接预处理出所有的满足题目要求的 \(x\),询问时直接二分其位置即可。至于 \(p=2\) 的情况(事实上就是完全平方数),由于 \(x\) 以内的完全平方数个数为 \(\sqrt{x}\),因此利用类似前缀和的思想就可以求出这一部分的答案为 \(\sqrt{r}-\sqrt{l-1}\)。两个部分综合在一起即可求出答案。

具体实现的时候要注意答案的边界问题以及直接开根带来的精度问题。

Code

请注意,以下代码仅可在 C++14 语言下通过。原因可能是 sqrt 容易掉精度。

namespace Solution {
const int N = 3e6 + 7;
const ll MX = 1e18;
int q, cnt;
ll l, r, num[N]; ill solve(ll x) {
ll idx = lower_bound(num + 1, num + cnt + 1, x) - num;
if((idx <= cnt && num[idx] > x) || idx > cnt) idx--;
return idx + (ll)sqrt(x);
} iv Main() {
F(ll, i, 2, 1000000) {
long long k = i * i;
for(; k <= MX / i; ) {
k *= i;
ll sqrtk = sqrt(k);
if(sqrtk * sqrtk != k) num[++cnt] = k;
}
}
sort(num + 1, num + cnt + 1), cnt = unique(num + 1, num + cnt + 1) - num - 1;
read(q); while(q--) read(l, r), print(solve(r) - solve(l - 1), '\n');
return;
}
}

CF955C Sad powers 题解的更多相关文章

  1. Codeforces 955C Sad powers (数论)

    题目链接:Sad powers 题意:给出n个l和r,求出每个给出的[l,r]之间的可以使是另外一个数的k次方的数.(k>=2) 题解:题目给出的数据范围最大是1E18所以如果要直接把所有的从1 ...

  2. Codeforces 955C Sad powers(数论)

    Codeforces 955C Sad powers 题意 q组询问,每次询问给定L,R,求[L,R]区间内有多少个数可以写成ap的形式,其中a>0,p>1,1 ≤ L ≤ R ≤ 1e1 ...

  3. Codeforces Round #471 (Div. 2) C. Sad powers

    首先可以前缀和 ans = solve(R) - solve(L-1) 对于solve(x) 1-x当中符合条件的数 分两种情况 3,5,7,9次方的数,注意这地方不能含有平方次 平方数 #inclu ...

  4. codeforce 955c --Sad powers 思路+二分查找

    这一题的题意是   定义一个数,该数特点是为a的p次方 (a>0,p>1) 再给你n个询问,每个询问给出一个区间,求区间内该数的数目. 由于给出的询问数极大(10e5) 所以,容易想到应该 ...

  5. C. Sad powers

    You're given Q queries of the form (L, R). For each query you have to find the number of such x that ...

  6. Codeforces 955C - Sad powers(数论 + 二分)

    链接: http://codeforces.com/problemset/problem/955/C 题意: Q次询问(1≤Q≤1e5),每次询问给出两个整数L, R(1≤L≤R≤1e18),求所有符 ...

  7. CodeForce-955C

    C. Sad powerstime limit per test2 secondsmemory limit per test256 megabytesinputstandard inputoutput ...

  8. [题解] CF622F The Sum of the k-th Powers

    CF622F The Sum of the k-th Powers 题意:给\(n\)和\(k\),让你求\(\sum\limits_{i = 1} ^ n i^k \ mod \ 10^9 + 7\ ...

  9. hdu2348题解

    又恬不知耻的开始写题解了,暑假到了,QAQ然而想我这样的弱逼是没有暑假的sad,还是老老实实刷题吧. 题目大意:给一个小车的宽度和长度和两条道路的宽度,判断小车能否通过. 思路:可以先看下面的图,我们 ...

随机推荐

  1. 大厂技术实现 | 腾讯信息流推荐排序中的并联双塔CTR结构 @推荐与计算广告系列

    作者:韩信子@ShowMeAI,Joan@腾讯 地址:http://www.showmeai.tech/article-detail/tencent-ctr 声明:版权所有,转载请联系平台与作者并注明 ...

  2. List、ArrayList、迭代器、链表、Vector

    1.List接口中的常用方法. List是Collection接口的子接口.所以List接口中有一些特有的方法. void add(int index, Object element) Object ...

  3. vue指令v-for报错:Elements in iteration expect to have 'v-bind:key' directives.eslint-plugin-vue

    文件–>首选项–>设置–>在搜索框中输入:vetur.validation.template,取消勾选.

  4. Collection集合框架与Iterator迭代器

    集合框架 集合Collection概述 集合是Java中提供的一种容器,可以用来存储多个数据 集合与数组的区别: 数组的长度固定,集合的长度可变 数组中存储的是同一类型的元素,可以存储基本数据类型值, ...

  5. DTOJ 4030: 排列计数

    [题目描述] 求有多少个1到n的排列满足恰有$k$对在排列中相邻的数满足前小于后,答案对2012取模. [输入] 一行2个正整数$n,k$. [输出] 输出一个整数表示答案. [样例输入] 5  2 ...

  6. 感谢 git

    今天对程序大修了一下,顺便把所有算例测试了一遍,突然发现二维浅水方程有些算例出现了明显的错误. 这次突然出现的错误让我有点措手不及,因为一直没有修改过浅水方程求解器,所以这些算例很久没有测试过了.硬着 ...

  7. 水平梯度在sigma坐标对应形式

    sigma 坐标变换 一般 \(\sigma\) 坐标转换方程为 \[\sigma = \frac{z-\eta}{D} = \frac{z-\eta}{H+\eta} \] 转换后水深 z 范围由原 ...

  8. plink 进行PCA分析

    当我们进行群体遗传分析时,得到vcf后,可利用plink进行主成分(PCA)分析: 一.软件安装 1 conda install plink 二.使用流程 第一步:将vcf转换为plink格式 1 p ...

  9. R 语言 select函数在org.Hs.eg.db上的运用

    首先org.Hs.eg.db是一个关于人类的 一,在R中导入包library(org.Hs.eg.db) http://www.bioconductor.org/packages/release/da ...

  10. 08 eclipse配置JDK

    eclipse配置JDK1.8 一.打开eclipse:Window>>Preferences: 二.搜索:"jdk",并点击右侧的"Add": 三 ...