题目描述

现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少?

分析

根据模拟退火的基本套路,先随机分两堆金币,然后每一次随机从两堆中取出一个,进行交换,看看答案是否更优【太简单了,不多赘述】

ac代码

#include <bits/stdc++.h>
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define db double
using namespace std;
inline char gc() {
    static char buf[1 << 16], *S, *T;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 1 << 16, stdin);
        if (T == S) return EOF;
    }
    return *S ++;
}
template <typename T>
inline void read(T &x) {
    T w = 1;
    x = 0;
    char ch = gc();
    while (ch < '0' || ch > '9') {
        if (ch == '-') w = -1;
        ch = gc();
    }
    while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gc();
    x = x * w;
}
template <typename T>
void write(T x) {
    if (x < 0) putchar('-'), x = -x;
    if (x > 9) write(x / 10);
    putchar(x % 10 + 48);
}
#define N 105
int n, ans;
int a[N];
int calc() {
    int res1 = 0, res2 = 0;
    for (int i = 1; i <= n; i ++)
        if (i <= (n + 1) / 2) res1 += a[i];
        else res2 += a[i];
    return abs(res1 - res2);
}
db Rand() {
    return rand() % 10000 / 10000.0;
}
void SA(db T) {
    while (T > 1e-3) {
        int x = rand() % ((n + 1) / 2) + 1, y = rand() % ((n + 1) / 2) + ((n + 1) / 2);
        if (x <= 0 || x > n || y <= 0 || y > n) continue;
        swap(a[x], a[y]);
        int res = calc();
        if (ans > res) ans = res;
        else if ((exp((1.0 * ans - 1.0 * res) / T)) <= Rand()) swap(a[x], a[y]);
        T *= 0.98;
    }
}
int main() {
//  freopen("coin.in","r",stdin);
//  freopen("coin.out","w",stdout);
    srand(15346301);
    int cas;
    read(cas);
    for (int _t = 1; _t <= cas; _t ++) {
        read(n);
        for (int i = 1; i <= n; i ++) read(a[i]);
        ans = inf;
        for (int i = 1; i <= 150; i ++) SA(10000);
        printf("%d\n", ans);
    }
    return 0;
}

[luogu3878][TJOI2010]分金币【模拟退火】的更多相关文章

  1. [Luogu3878] [TJOI2010]分金币

    题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 输入输出格式 输入格式: 每个输入文件中包含多 ...

  2. Luogu-3878 [TJOI2010]分金币

    这题和在我长郡考试时的一道题思路差不多...考虑折半搜索,预处理左半边选的方案所产生的数量差值\(x\)以及价值差值\(y\),把\(y\)扔到下标为\(x\)的set里面,然后在搜索右半边,每搜出一 ...

  3. luogu P3878 [TJOI2010]分金币

    [返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\ ...

  4. [TJOI2010]分金币

    嘟嘟嘟 看数据范围,就能想到折半搜索. 但怎么搜,必须得想清楚了. 假设金币总数为1000,有20个人,首先搜前10个人,把答案记下来.然后如果在后十个人中搜到了4个人,价值为120,那么我们应该在记 ...

  5. [洛谷P3878][TJOI2010]分金币

    题目大意:把$n(n\leqslant30)$个数分成两组,两组个数最多相差$1$,求出两组元素差的绝对值最小使多少 题解:模拟退火 卡点:$\exp$中的两个数相减写反,导致$\exp(x)$中的$ ...

  6. 分金币 bzoj 3293

    分金币(1s 128M)  coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...

  7. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

  8. 【贪心+中位数】【UVa 11300】 分金币

    (解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...

  9. 【BZOJ3293】分金币(贪心)

    [BZOJ3293]分金币(贪心) 题面 BZOJ 洛谷 题解 和上一题一样啊. #include<cstdio> #include<cmath> #include<al ...

随机推荐

  1. CRM系统(第四部分)

      阅读目录 1.引入权限组件rbac 2.分配权限 3.登录.引入中间件 1.引入权限组件rbac 1.settings配置app.中间件   INSTALLED_APPS = [ ... ... ...

  2. Oracle 条件判断函数decode和case when then案例

    --decode条件判断函数 ,,,,,) from dual --需求:不通过连表查询,显示业主类型名称列的值 ,,,'商业','其他') from t_owners --case when the ...

  3. 50分钟学会Laravel 50个小技巧(基于laravel5.2,仅供参考)

    转载请注明:转载自 Yuansir-web菜鸟 | LAMP学习笔记 本文链接地址: 50分钟学会Laravel 50个小技巧 原文链接:< 50 Laravel Tricks in 50 Mi ...

  4. Eclipse的一个“bug”

    标题之所以打上双引号,是因为暂时不知道怎么确定. 一个 .java文件里有两个类:public Bath:Soap.它们都有一个main()方法. 从命令行单独访问任意一个类的main()方法,都没毛 ...

  5. WPF中关于对前台Xaml中Triggers的一些重要思考。

    今天在做一个小Demo的时候碰到了一个比较奇怪的问题,就是其中一个Trigger始终无法执行,<Trigger Property="Popup.IsOpen" Value=& ...

  6. python设计模式第二十四天【命令模式】

    1.使用场景 (1)调用过程比较繁琐,需要封装 (2)调用参数需要进行处理封装 (3)需要添加额外的功能,例如,日志,缓存,操作记录等 2.代码实现 #!/usr/bin/env python #! ...

  7. Yii2的客户端验证

    如何配置Yii的客户端验证呢? 首先,应该配置验证规则的场景,即scenario 其次,应该配置验证规则,在验证规则中配置客户端验证 例如:

  8. Java线程的创建方式三:Callable(四)

    一.Java实现多线程的三种方式 方式一:继承Thread类: public class Test extends Thread { public static void main(String[] ...

  9. Logging - MVC Using Log4net Save to File and Database

    第一步:创建Config文件夹和log4net.config 第二步:在log4net.confg黏贴以下配置 <?xml version="1.0" encoding=&q ...

  10. moogodb 安装及简单介绍

    1,安装Moogodb 因为是windows 64位操作系统,直接到官网上下载.msi文件,下载完成后点击安装,点击同意协议之后,出现下面的对话框, Choose Setup Type, 就是选择安装 ...