题意

题目链接

Sol

首先不难想到一个dp

设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数

转移的时候判断一下最后一个位置是否是\(j\)

\[f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * j
\]

for(int i = 0; i <= A; i++) f[0][i] = 1;
for(int i = 1; i <= N; i++)
for(int j = 1; j <= A; j++)
f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j));
cout << mul(f[N][A], fac[N]);

发现还是不好搞,把转移拆开

\(f[i][j] = \sum_{k = 0}^{j - 1} f[i - 1][k] * (k + 1)\)

这个转移就非常有意思了

我们如果把\(i\)看成列,\(k\)看成行,那么转移的时候实际上就是先对第\(k\)行乘上一个系数\(k\),然后再求和

如果我们把第\(i - 1\)列看成一个\(t\)次多项式,显然第\(i\)列是一个\(t+2\)次多项式(求和算一次,乘系数算一次)

这样的话第\(i\)列就是一个最高\(2i+1\)次多项式

插一插就好了

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10001;
int A, N, Lim, mod, f[501][MAXN], fac[MAXN], y[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
void add2(int &x, int y) {
if(x + y < 0) x = (x + y + mod);
else x = (x + y >= mod ? x + y - mod : x + y);
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int Large(int *y, int k) {
static int x[MAXN], ans = 0;
for(int i = 1; i <= Lim; i++) x[i] = i;
for(int i = 0; i <= Lim; i++) {
int up = y[i], down = 1;
for(int j = 0; j <= Lim; j++) {
if(i == j) continue;
up = mul(up, add(k, -x[j]));
down = mul(down, add(x[i], -x[j]));
}
add2(ans, mul(up, fp(down, mod - 2)));
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
// freopen("a.out", "w", stdout);
#endif
cin >> A >> N >> mod; Lim = 2 * N + 1;
fac[0] = 1; for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]);
for(int i = 0; i <= Lim; i++) f[0][i] = 1;
for(int i = 1; i <= N; i++) {
for(int j = 1; j <= Lim; j++) {
f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j));
}
}
for(int i = 0; i <= Lim; i++) y[i] = f[N][i];
cout << mul(Large(y, A), fac[N]);
return 0;
}

BZOJ2655: calc(dp 拉格朗日插值)的更多相关文章

  1. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  2. 【BZOJ2655】Calc(拉格朗日插值,动态规划)

    [BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...

  3. 【BZOJ2655】calc(拉格朗日插值)

    bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...

  4. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  5. BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)

    这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...

  6. bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...

  7. P4463 [国家集训队] calc(拉格朗日插值)

    传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1] ...

  8. 【bzoj4559】[JLoi2016]成绩比较(dp+拉格朗日插值)

    bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\ ...

  9. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

随机推荐

  1. 《深入浅出nodejs》读书笔记(2)

    概述 本来是想着学学node.js试试的,后来发现node.js才是真正的js啊,它里面用到了很多我们平时没用过的js特性,而且还非常优雅,比如它里面的异步编程思想,总之,<深入浅出node.j ...

  2. 关于在vscode中以https方式请求!不是以file文件夹访问!vscode中 ajax请求

    在vscode 头疼的问题是 用浏览器查看网页!会是以文件夹的方式打开的!  我遇到这个问题 我还重新配置了Apache    ! 但是现在可以解决: 使用vscode  ============== ...

  3. vue脚手架中使用axios

    虽然之前用过n次,但大多都是直接在页面中引入axios.js的.今天想换种方式使用,一时间竟不知道怎么配置了.特此记录下. 1.npm 安装axios,文件根目录下安装,指令如下:  npm inst ...

  4. golang IO streaming

    IO Streaming Streaming IO in Go,引用此文,略有修改 io.Reader和io.Writer io.Reader接口定义了从传输缓存读取数据 type Reader in ...

  5. 教你使用docker部署淘宝rap2服务

    什么是rap2 先来说说起因,在上一个星期的分享会上,谈到前后端联调上,有同事提到了rap2,特意去了解了一下,觉得使用这个东西来进行前后端的接口联调来真是太方便了,对比我们之前公司内部开发的API ...

  6. javascript数组的属性、方法和清空-最全!!!(必看)

    今天经理要我从新看一遍js,当我再看<精通js和jquery>这本书时,发现关于数组的这章节讲的很少,于是想自己总结一下数组的常用方法. 定义数组: var arr = new Array ...

  7. 【shiro】(3)---了解Shiro

    了解Shiro 一Apache Shiro作用 Apache Shiro是一个功能强大且易于使用的Java安全框架,可执行身份验证,授权,加密和会话管理,令行应用程序. Shiro提供了应用程序安全A ...

  8. Homebrew简介和基本使用

    一.Homebrew是什么 Homebrew是一款Mac OS平台下的软件包管理工具,拥有安装.卸载.更新.查看.搜索等很多实用的功能.简单的一条指令,就可以实现包管理,而不用你关心各种依赖和文件路径 ...

  9. Android切换横竖屏不销毁前台Activity,也不影响后台Activity

    在切换屏幕方向的时候,Activity默认会走销毁->重建的生命周期,而有时候我们不希望如此,就需要做些额外的设置了: 1.在AndroidMainifest.xml中对应的Activity标签 ...

  10. SaltStack安装配置详解

    一.简介 Saltstack 比 Puppet 出来晚几年,是基于Python 开发的,也是基于 C/S 架构,服务端 master 和客户端 minions :Saltstack 和 Puppet ...