FP-Growth in Spark MLLib
并行FP-Growth算法思路
上图的单线程形成的FP-Tree。
分布式算法事实上是对FP-Tree进行分割,分而治之
首先,假设我们只关心...|c这个conditional transaction,那么可以把每个transaction中的...|c保留,并发送到一个计算节点中,必然能在该计算节点构造出FG-Tree
root
| \
f:3 c:1
|
c:3
进而得到频繁集(f,c)->3.
同样,如果把所有transaction中的...|b保留,并发送到一个计算节点中,必然能在该几点构造出FG-tree
root
/ \
f:2 c:1
| \ \
c:1 b:1 b:1
|
a:1
|
b:1
进而得到(b)->3。
以上两个例子得到了两个tree,并且分别得到了部分结果。
事实上算法的思路就是把transaction的conditional transaction进行分割(分组),分割的依据就是conditional transaction的suffix(的hash,如果直接是suffix也可以,但是使得spark任务有过多task)。对每个分组分别构建FP-tree,然后在每个子树中获得部分结果,合并得到最终结果。
Spark Mllib中算法
遍历一次数据集输出F-List,类似wordcount,得出频繁出现的items,将F-List划分为G-List,即将频繁items进行分组:
- F-List包含item全集I中的频繁item,F-List={f_1,...},f_i在Transaction中出现的频率>support阈值。
- G-List={g_1,...}, g_i=hash_of(f_i)=H(f_i).
实际上,计算的f_i hash值作为partition_id,在MLLib过程中将conditional transaction f'1,f'2,...|f_i 分发到partition_id=H(f_i)对应的计算节点。
// data即所有的transaction,每个trans是Item数组
def run[Item: ClassTag](data: RDD[Array[Item]]): FPGrowthModel[Item] = {
// 计算support阈值
val count = data.count()
val minCount = math.ceil(minSupport * count).toLong
val numParts = if (numPartitions > 0) numPartitions else data.partitions.length
val partitioner = new HashPartitioner(numParts)
// 第一次遍历,统计frequency,过滤掉低于support阈值的item
val freqItems:Array[Item] = genFreqItems(data, minCount, partitioner)
// 第二次遍历
val freqItemsets = genFreqItemsets(data, minCount, freqItems, partitioner)
new FPGrowthModel(freqItemsets)
}
各组构建FP-tree
再次遍历数据集,每个trans中的items按照frequency进行降序排列,并构造conditional transactions,例如一个trans={a,b,c,d,e},a的frequency最高,以此降低,构造其相应的conditional transactions:
a,b,c,d,e:
condition trans ; partition_id
a,b,c,d|e ; partition = H(e)
a,b,c|d ; partition = H(d)
a,b|c ; partition = H(c)
a|b ; partition = H(b)
a ; partition = H(a)
对应code在genFreqItemsets
.
- 每个transaction的conditional transaction,并且按照suffix计算hash作为partition_id分组
- 各个partition_id对应的[condition items]所有集合,即G-List,对G-List的agg即为构造FP-Tree过程
- 在各个part中提取该part包含的频繁集。在part子树中,node x,若hash(x)=part_id,并且x到root路径能形成频繁集,则输出path(x->root)中的各个节点作为频繁集。
- 将rank转为对应的item
private def genFreqItemsets[Item: ClassTag](
data: RDD[Array[Item]], // transactions
minCount: Long, // support threshold
freqItems: Array[Item], // FP-List
partitioner: Partitioner): RDD[FreqItemset[Item]] = {
// freqItems已经排序了,zip出每个Item的rank
val itemToRank = freqItems.zipWithIndex.toMap
// 形成partition_id->[condition items]
data.flatMap { transaction =>
// 计算conditional transactions
genCondTransactions(transaction, itemToRank, partitioner)
}
// 各个partition_id对应的[condition items]所有集合,即G-List,
// 对G-List的agg即为构造FP-Tree过程
.aggregateByKey(new FPTree[Int], partitioner.numPartitions)(
(tree, transaction) => tree.add(transaction, 1L),
(tree1, tree2) => tree1.merge(tree2))
// 在各个part中提取该part包含的频繁集
.flatMap { case (part, tree) =>
tree.extract(minCount, x => partitioner.getPartition(x) == part)
}
// 将rank转为对应的item
.map { case (ranks, count) =>
new FreqItemset(ranks.map(i => freqItems(i)).toArray, count)
}
}
计算conditional transactions
- itemToRank,rank越小对应的frequency是越大的
- 每个trans中筛出frequent Item,并对rank排序,得到的item即按照frequency由大到小排序
- FP_list={a,b,c,d,e,f}
- 一个trans=[f,e,d,a,c], 那么将得到[0,2,3,4,5]
- 构造conditional transaction
- 例如0,2|3 计算3的partition_id(3), 形成partition_id(3)->[0,2,3]
private def genCondTransactions[Item: ClassTag](
transaction: Array[Item],
itemToRank: Map[Item, Int],
partitioner: Partitioner): mutable.Map[Int, Array[Int]] = {
val output = mutable.Map.empty[Int, Array[Int]]
// Filter the basket by frequent items pattern and sort their ranks.
val filtered = transaction.flatMap(itemToRank.get)
ju.Arrays.sort(filtered)
val n = filtered.length
var i = n - 1
while (i >= 0) {
val item = filtered(i)
val part = partitioner.getPartition(item)
if (!output.contains(part)) {
output(part) = filtered.slice(0, i + 1)
}
i -= 1
}
output
}
FP-Growth in Spark MLLib的更多相关文章
- 《Spark MLlib机器学习实践》内容简介、目录
http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...
- Spark MLlib 机器学习
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...
- Spark MLlib - LFW
val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first pri ...
- Spark MLlib 之 Basic Statistics
Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法 ...
- Spark MLlib Data Type
MLlib 支持存放在单机上的本地向量和矩阵,也支持通过多个RDD实现的分布式矩阵.因此MLlib的数据类型主要分为两大类:一个是本地单机向量:另一个是分布式矩阵.下面分别介绍一下这两大类都有哪些类型 ...
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
- Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...
- Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...
- spark mllib配置pom.xml错误 Multiple markers at this line Could not transfer artifact net.sf.opencsv:opencsv:jar:2.3 from/to central (https://repo.maven.apache.org/maven2): repo.maven.apache.org
刚刚spark mllib,在maven repository网站http://mvnrepository.com/中查询mllib后得到相关库的最新dependence为: <dependen ...
- Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使 ...
随机推荐
- Java集合set的并、交、差操作
集合的并.交.差操作 Set<Integer> result = new HashSet<Integer>(); Set<Integer> set1 = new H ...
- cf-Round542-Div2-B(贪心)
题目链接:http://codeforces.com/contest/1130/problem/B 思路: 贪心题.定义结构体数组a,a[i].x[0],a[i].x[1]分别表示i出现的第一个下标和 ...
- Escape(状态压缩+最大流,好题)
Escape http://acm.hdu.edu.cn/showproblem.php?pid=3605 Time Limit: 4000/2000 MS (Java/Others) Memo ...
- DOS中命令的格式
---------------siwuxie095 一.DOS中,命令使用格式的一般形式 用中文表达的形式为: [路径] 关键字 [盘符] [路径] 文件名 [扩展名] (参数) [参数 ...
- Writing A Better JavaScript Library For The DOM 阅读记录
原文地址:http://coding.smashingmagazine.com/2014/01/13/better-javascript-library-for-the-dom/ 主要观点: live ...
- Paxos Made Simple
Paxos一致性算法——分布式系统中的经典算法,论文本身也有一段有趣的故事.一致性问题是分布式系统的根本问题之一,在论文中,作者一步步的加强最初一致性问题(2.1节提出的问题)的约束条件,最终导出了一 ...
- Sql优化-必劳记!
0. 尝试在合适的场景下,用 Charindex()函数代替 like,或者全文索引进行 内容搜寻.%like%不走索引,'like%'后百分号可以走索引. 1.调整不良SQL通常可以从以下几点切入: ...
- jQuery控制TR显示隐藏
参考链接:http://www.jb51.net/article/51221.htm 通过jQuery的hide和show方法即可.
- tomcat执行文件权限
.当我在linux下某个目录执命令或者安装的时候通常会提示没有权限或者不可以操作,这时需要加权限 chmod /usr/local/tomcat/bin; 2关于LINUX权限(启动tomcat)-b ...
- python性能测试大致计划
hi guy: 如果注意到创建时间,那就对了.这份文章,是我学习Python一个月以后动手写的. 写下这份计划以后,只完成了第一步,其中磕磕绊绊编写代码的过程,很大一部分时间是完全用txt写的 ...