高斯消元可以解决一系列DP序混乱的无向图上(期望)DP

DP序

DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前;

(通俗的说,在一个状态转移方程中‘=’左侧的状态应该在‘=’右侧的所有状态之后)

于是往往只有按DP序转移状态,才可以保证每个状态值的正确性

一道DP的状态序不是唯一的

常见的有:

某些DAG上dp按拓扑序转移;

某些树上DP先转移x点的子树,后转移x;

某些树上DP先转移x,后转移x点的子树;

线性DP左到右或右到左;

区间DP小到大;

某些记忆化搜索的第一次出栈顺序;

概率与期望

自行百度吧~

概率/期望DP

转移时涉及概率的DP,他可以是线性的、树上的、DAG上的、任何形式的;

其标志是转移时涉及概率,

如“状态x有p/q的概率转移到y,有(1-p/q)的概率转移到z”;

一般情况下概率/期望DP除了应该使用浮点数据类型存贮状态、可能可以通过概率有关的知识优化之外,与非概率期望DP没有什么不同;

然而又有一类概率/期望DP则不同;

即一部分DP序混乱的无向图概率/期望DP

无向图概率/期望DP

无向图DP,这里指的是在无向图上DP

无向图概率/期望DP并非一定是DP序混乱的,然而这里只讨论DP序混乱的那一部分;

DP序混乱,往往是指存在两个状态x,y,x可以转移到y,y也可以转移到x;

在非概率/期望DP中不可能存在这种情况——因为这会导致状态值不确定;

然而在概率/期望DP中这种情况却可以存在;

因为如果在此类DP中,存在DP序混乱的情况,一般是x的p/q可以转移到y,y的a/b可以转移到x;

于是经过了无穷次相互转移后,之后的转移增量趋向于无穷小,于是可以认为此时状态的值确定了下来;

于是,有了一种十分显然的想法——迭代相互转移的次数,直到精度符合要求;

然而这种想法是十分幼稚的——迭代层数无法确定,

于是得分的上限取决于你设定的迭代层数会在什么数据范围的情况下导致超时;

得分的下限则完全取决于出题人的心情,这意味着出题人很容易造出可以卡掉迭代层数很高的代码的数据;

于是有了用高斯消元处理DP序混乱的无向图概率/期望DP方法

高斯消元

高斯消元是一种解线性方程组的方法,

这里只介绍高斯消元解n元一次方程组(n元一次方程组是线性方程组的一类)

事实上,高斯消元法与我们数学中常用的消元法类似;

其流程是:

1.选定一个未知数xi,准备把他消去;

2.随便选定一个xi系数不为零的方程Xi,(若没有,则无解或无数解);

3.把其他所有方程都减去Xi的某倍数,促使除了Xi外,所有方程的xi被消去;

4.重复123,(每个未知数,每个方程只被选定一次),直到只剩下一个未知数一个方程;

5.按选定方程的倒序选定方程,不断把已知未知数的值带入其中得到新未知数的值;

有唯一解的条件,至少n个方程,在高斯消元过程中没有被作无解或无数解

代码:

 bool flag=true;
double matrix[N+][N+],ans[N+]; void Gauss(int n){
int i,j;
bool fl=false;
for(i=n;i>;i--)
if(matrix[i][n]>eps||matrix[i][n]<-eps){
swap(matrix[i],matrix[n]),fl|=;
break;
}
flag=fl;
if(!flag)return ;
for(i=;i<n;i++)
for(j=;j<=n;j++)
matrix[i][j]-=matrix[n][j]*matrix[i][n]/matrix[n][n];
if(n-)Gauss(n-);
if(!flag)return ;
for(i=;i<n;i++)
matrix[n][]-=matrix[n][i]*ans[i];
ans[n]=matrix[n][]/matrix[n][n];
}

观察代码可以看出其效率为$O(n^3)$

用高斯消元处理期望DP

高斯消元可以处理方程组;

于是列出关于n个状态的n个方程往往可以直接解得状态的值

于是把n个本质不同的状态转移方程列作方程组,用高斯消元求解即可解决一类DP序混乱的概率/期望DP;

例题

JS09有趣的游戏

HN13游走

......

是不是应该写几个题解呢...

延伸

待续......

高斯消元与期望DP的更多相关文章

  1. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  2. HDU4870_Rating_双号从零单排_高斯消元求期望

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...

  3. hdu 4870 rating(高斯消元求期望)

    Rating Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  5. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  6. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  7. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  8. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  9. [ACM] hdu 4418 Time travel (高斯消元求期望)

    Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...

随机推荐

  1. [Swift实际操作]七、常见概念-(5)使用NSString对字符串进行各种操作

    本文将为你演示字符串NSString的使用,NS是Cocoa类对象类型的前缀,来源于乔布斯建立的另一家公司--NeXT NSString的使用方法,和Swift语言中的String有很多相似之处.首先 ...

  2. 【小程序云开发入门】quickStart

    开发者可以使用云开发开发微信小程序.小游戏,无需搭建服务器,即可使用云端能力. 云开发为开发者提供完整的云端支持,弱化后端和运维概念,无需搭建服务器,使用平台提供的 API 进行核心业务开发,即可实现 ...

  3. Swift里字符串(六)Shared strings

    Shared strings do not have tail-allocated storage, but can provide access upon query to contiguous U ...

  4. iOS pods更新失败

    ――― TEMPLATE END ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― [!] Oh no, an erro ...

  5. hive与hbase的整合

    Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行.其优点学习成本低,可以通过类S ...

  6. android图片压缩总结

    一.bitmap 图片格式介绍 android中图片是以bitmap形式存在的,那么bitmap所占内存,直接影响到了应用所占内存大小,首先要知道bitmap所占内存大小计算方式: bitmap内存大 ...

  7. 【数组】Search a 2D Matrix

    题目: Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the f ...

  8. C/C++ -- Gui编程 -- Qt库的使用 -- 使用自定义类

    1.新建空Qt工程 2.新建C++类HelloQt 3.新建ui文件,添加部件,重命名主窗体(对话框)类名HelloQt,构建生成ui头文件 4.修改头文件helloqt.h #ifndef HELL ...

  9. centOS7.2下 搭建gitlab使用git为团队管理代码

    最近更换了阿里云服务器  使用centOS7.2,目前配置1核2G,搭建gitlab有点吃力,另外如果1核1g就不要搭建了,推荐配置是2核4G以上 下面来简单记录整个搭建过程 注意: 本次实验OS为c ...

  10. css3的overflow-anchor

    overflow-anchor属性使我们能够选择退出滚动锚定,这是一个浏览器特性,旨在允许内容在用户当前的DOM位置上加载,而不需要在内容完全加载后更改用户的位置. 为何要有这个属性? 滚动锚定是一种 ...