本文主要是对照scikit-learn的preprocessing章节结合代码简单的回顾下预处理技术的几种方法,主要包括标准化、数据最大最小缩放处理、正则化、特征二值化和数据缺失值处理。

数学基础

均值公式:

$$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$$

方差公式:

$$s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$$

0-范数,向量中非零元素的个数。

1-范数:

$$\|X\|=\sum_{i=1}^{n}\left|x_{i}\right|$$

2-范数:

$$\|X\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$$

p-范数的计算公式:

$$\|X\|_{p}=\left(|x 1|^{p}+|x 2|^{p}+\ldots+|x n|^{p}\right)^{\frac{1}{p}}$$

一、标准化(Standardization)

实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化。(做概率论的题经常用这招啊)

但是,当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差。

公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行.

将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。

方法一:使用sklearn.preprocessing.scale()函数

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
X_mean = X.mean(axis=0) #calculate mean
X_std = X.std(axis=0) #calculate variance
X1 = (X-X_mean)/X_std #standardize X
X_scale = preprocessing.scale(X) #use function preprocessing.scale to standardize X

最后X_scale的值和X1的值是一样的

方法2:sklearn.preprocessing.StandardScaler类

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
scaler = preprocessing.StandardScaler()
X_scaled = scaler.fit_transform(X)

这两个方法得到最后的结果都是一样的。

二、放缩(MinMaxScaler)

另一种常用的方法是将属性缩放到一个指定的最大值和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类来实现。

使用这种方法的目的包括:

  • 1、对于方差非常小的属性可以增强其稳定性;
  • 2、维持稀疏矩阵中为0的条目。

下面将数据缩至0-1之间,采用MinMaxScaler函数

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_minMax = min_max_scaler.fit_transform(X)
X_minMax
array([[0.5       , 0.        , 1.        ],
[1. , 0.5 , 0.33333333],
[0. , 1. , 0. ]])

三、正则化(Normalization)

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

该方法是文本分类和聚类分析中经常使用的向量空间模型(Vector Space Model)的基础.

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

方法1:使用sklearn.preprocessing.normalize()函数

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
X_normalized = preprocessing.normalize(X, norm='l2')
X_normalized

方法2:sklearn.preprocessing.StandardScaler类

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
normalizer = preprocessing.Normalizer()
normalizer.transform(X)

两种方法的结果相同:

array([[ 0.40824829, -0.40824829,  0.81649658],
[ 1. , 0. , 0. ],
[ 0. , 0.70710678, -0.70710678]])

四、二值化(Binarization)

特征的二值化主要是为了将数据特征转变成boolean变量。

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
binarizer = preprocessing.Binarizer()
binarizer.transform(X)

Binarizer函数也可以设定一个阈值,结果数据值大于阈值的为1,小于阈值的为0,实例代码如下:

//只需加一个参数
binarizer = preprocessing.Binarizer(threshold=1.1)

五、缺失值处理

现实中的数据集都包含有缺失值,要么是空白的,要么使用NaNs或者其它的符号替代。

这些数据无法直接使用scikit-learn分类器直接训练,所以需要进行处理。

幸运地是,sklearn中的Imputer类提供了一些基本的方法来处理缺失值,如使用均值、中位值或者缺失值所在列中频繁出现的值来替换。

import numpy as np
from sklearn.preprocessing import Imputer
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit([[1, 2], [np.nan, 3], [7, 6]]) X = [[np.nan, 2], [6, np.nan], [7, 6]]
print(imp.transform(X))

Imputer类同样支持稀疏矩阵(即含有大量的0):

import scipy.sparse as sp
X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
imp = Imputer(missing_values=0, strategy='mean', axis=0)
imp.fit(X) X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
print(imp.transform(X_test))

更多的请到scikit-learn的官方文档中查看

参考链接:https://blog.csdn.net/Dream_angel_Z/article/details/49406573

Scikit-learn Preprocessing 预处理的更多相关文章

  1. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. tf.contrib.learn.preprocessing.VocabularyProcessor()

    tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length, min_frequency=0, vocabulary ...

  7. pre-processing预处理

    什么是神经网络?神经网络是由很多神经元组成的,首先我们看一下,什么是神经元1.我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后2.这些数据的每一个都会被乘个数,即权值w,然后这些东 ...

  8. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  9. sklearn learn preprocessing

    train_test_split sklearn.model_selection.train_test_split(*arrays, test_size(float,int/None),#defaul ...

随机推荐

  1. ROS第一次开网站跳转到公告页(任意地址跳转)方法

    原文: http://bbs.routerclub.com/thread-74654-1-5.html ROS首页强开配置脚本: /ip firewall natadd action=dst-nat ...

  2. 第四次实验报告:使用Packet Tracer理解RIP路由协议

    目录 1 实验目的 2 实验内容 3. 实验报告 3.1 建立网络拓扑结构 3.2 配置参数 3.3 测试网络连通性 3.4 理解RIP路由表建立和更新 4. 理解RIP消息传得慢 5. 拓展 1 实 ...

  3. SpringBoot第十二篇:整合jsp

    作者:追梦1819 原文:https://www.cnblogs.com/yanfei1819/p/10953600.html 版权声明:本文为博主原创文章,转载请附上博文链接! 引言   Sprin ...

  4. python2升级python3

    需求: centos环境,python2.7需要升级为python3.x 1.请先手动(再次)安装 openssl .否则你升级之后,你的pip不能下载,会各种报错的. 比如这种错误: ImportE ...

  5. mongodb集群化

    转自:https://www.cnblogs.com/nulige/p/7613721.html 一.mongodb主从复制配置 主从复制是MongoDB最常用的复制方式,也是一个简单的数据库同步备份 ...

  6. for循环居然还可以这样写

    公司代码有点坑,查找问题,发现for循环的写法不是固定条件在中间,写反了也是可以运行的.比如:下面一个简单的for循环 int m=0; for(int i=0;i>3;i++){ m=m+i; ...

  7. [Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'information_schema.PROFILING.SEQ'

    在Navicat Premium中执行Mysql的一条删除语句,虽然执行成功了,却提示已下错误: 受影响的行: 时间: .005s of ORDER BY clause is not in GROUP ...

  8. scala中的Option

    Scala中Option是用来表示一个可选类型 什么是可选? --> 主要是指 有值(Some) 和 无值(None)-->Some和None是Option的子类 val myMap:Ma ...

  9. HDU 2007-11 Programming Contest

    Can you find it? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/10000 K (Java/Others ...

  10. pod install速度慢,pod repo update 速度慢解决方法

    相信大家已经感受到pod install速度越来越慢了,网上提供了几种解决方案,但是都没有完全解决速度慢的问题. 使用国内镜像的Specs 在pod install时使用命令pod install - ...