Machine Learning System

introduction

This project is a full stack Django/React/Redux app that uses token based authentication with Knox.

Then I add Machine Learning features for demostrate the full workflow of the data mining, including the four stage corresponding to four pages:

  1. data management
  2. data explore
  3. model train
  4. prediction

The data set is the classic iris data, which is only for demo, and this project is from my interest. so you can reference, but the quality is not assured.

features

  • authentication functions

login from login page register your account logout from inner page

  • data management

input iris items edit iris items delete iris items

  • data explore

inspect attribute distribution through histogram inspect sepal distribution through scatter graph inspect petal distribution through scatter graph

  • model train

input cluster number train a cluster model using sklearn-kmeans library inspect cluster result through sepal and petal scatter

  • prediction

input iris sepal and petal attributes predict iris cluster

technology stack

category name comment
frontend reactjs frontend framework
frontend redux state management
frontend react-C3JS D3 based graph tool
frontend react-bootstrap style component library
frontend data-ui react data visualization tool
backend django backend framework
backend django-rest-knox authentication library
backend djangorestframework restful framework
backend sklearn machine learning tool

Quick Start

# Install dependencies
cd ./frontend
npm install # Build for production
npm run build # Install dependencies
cd ../backend
pipenv install # Serve API on localhost:8000
pipenv run python manage.py runserver

snapshot

login page

model train page

prediction page

a simple machine learning system demo, for ML study.的更多相关文章

  1. Stanford机器学习笔记-7. Machine Learning System Design

    7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to W ...

  2. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  3. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

  4. Machine Learning - XI. Machine Learning System Design机器学习系统的设计(Week 6)

    http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design

    (1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...

  7. Coursera 机器学习 第6章(下) Machine Learning System Design 学习笔记

    Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Buil ...

  8. 斯坦福第十一课:机器学习系统的设计(Machine Learning System Design)

    11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器 ...

  9. 斯坦福大学公开课机器学习:machine learning system design | data for machine learning(数据量很大时,学习算法表现比较好的原理)

    下图为四种不同算法应用在不同大小数据量时的表现,可以看出,随着数据量的增大,算法的表现趋于接近.即不管多么糟糕的算法,数据量非常大的时候,算法表现也可以很好. 数据量很大时,学习算法表现比较好的原理: ...

随机推荐

  1. Cleaning Robot POJ - 2688

    题目链接:https://vjudge.net/problem/POJ-2688 题意:在一个地面上,有一个扫地机器人,有一些障碍物,有一些脏的地砖,问,机器热能不能清扫所有的地砖, (机器人不能越过 ...

  2. thinkphp5 数据库查询之paginate: 同时获取记录总数和分页数据

    thinkphp5中要想同时获得查询记录的总数量以及分页的数据, 可以用paginate(), 真的非常方便! 表结构: CREATE TABLE `t_users` ( `id` int(11) u ...

  3. Linux系统下jar包的启动方式

    Linux 运行jar包命令如下: 方式一: Java -jar shareniu.jar 特点:当前ssh窗口被锁定,可按CTRL + C打断程序运行,或直接关闭窗口,程序退出 那如何让窗口不锁定? ...

  4. Beta冲刺(6/7)——2019.5.27

    所属课程 软件工程1916|W(福州大学) 作业要求 Beta冲刺(6/7)--2019.5.27 团队名称 待就业六人组 1.团队信息 团队名称:待就业六人组 团队描述:同舟共济扬帆起,乘风破浪万里 ...

  5. Spring Boot 中的事务管理

    希望能在发生异常的时候被回退,这时候就可以使用事务让它实现回退,做法非常简单,我们只需要在test函数上添加@Transactional注解即可. 使用@Transactional注解来声明一个函数需 ...

  6. 服务器端渲染 VS 浏览器端渲染

    这里的渲染,就是指生成html文档的过程,和浏览器渲染html没有关系. 浏览器端渲染,指的是用js去生成html,前端做路由.举例:React, Vue等等前端框架.适合单页面应用程序. 服务器端渲 ...

  7. python Tkinter的Text组件中创建x轴和y轴滚动条,并且text文本框自动更新(三)

    要求对文件边读边写并显示对话框. 1.加线程之后,必须要文件写完才显示对话框.错误代码: # encoding: utf-8 import time from Tkinter import * imp ...

  8. bind的模拟实现

    bind 一句话介绍 bind: bind() 方法会创建一个新函数.当这个新函数被调用时,bind() 的第一个参数将作为它运行时的 this,之后的一序列参数将会在传递的实参前传入作为它的参数.( ...

  9. NSString+URLParser NSScanner

    @implementation NSString (URLParser) -(NSDictionary*)parserToDict { NSScanner *scanner = [NSScanner ...

  10. springboot集成jsp,访问jsp页面下载问题

    1.导入相关依赖     (存在jsp页面下载问题,可能是缺少tomcat-embed-jasper的依赖对jsp的支持) <parent> <groupId>org.spri ...