花神的数论题

题意描述:
  • 设\(sum(i)\)表示\(i\)的二进制数中\(1\)的个数。
  • 给定一个整数\(N\),求\(\prod_{i=1}^Nsum(i)\)。
输入描述:
  • 输入包含一个正整数\(N(N\leq10^{15})\)。
输出描述:
  • 一个数,答案模\(10000007\)的值。
解题思路:
  • 数位\(dp\)+快速幂。
  • 令\(f(i,j,k)\)表示以\(k\)开头的\(i\)位数中\(1\)的个数为\(j\)的数量。有转移方程
    • \(f(i,j,0)=f(i-1,j,0)+f(i-1,j,1)\)
    • \(f(i,j,1)=f(i-1,j-1,0)+f(i-1,j-1,1)\)
    • 这个很好理解,就是往最高位填\(0/1\)。
  • 设\(sum(i)==x\)的\(i\)有\(tot\)个,那么他对答案的贡献显然就是\(x^{tot}\)。
  • 所以这时候枚举\(x\)就行,显然对于\(N(N\leq 10^{15})\)而言,不会枚举超过\(60\)次。
  • 详见代码:
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 70, mod = 10000007;
ll f[maxn][maxn][2];
ll n, ans; inline ll qmi(ll a, ll b)
{
ll res = 1;
while(b)
{
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1ll;
} return res % mod;
} //x对应的二进制中有多少个1
inline ll len(ll x)
{
ll res = 0;
while(x)
{
if(x & 1ll) res++;
x >>= 1ll;
}
return res;
} int num[maxn], cnt;
inline void work(ll x)
{
cnt = 0; ans = 1;
while(x) //分解数位
{
num[++cnt] = x&1;
x >>= 1;
} //枚举m, 求出有多少i,有sum(i)=m
for(int m = 1; m <= cnt; m++)
{
for(int i = 1; i < cnt; i++)
ans = (ans * qmi(m, f[i][m][1]) % mod) % mod;
//先枚举位数比n要小的数 //开始处理位数和n相同的数字
int k = m;
//如果n的最高位是1的话
//其实相当于把最高位固定了
if(num[cnt]) k--; //从高位往低位枚举
//之后我们让第i位小于n的第i位
//这样可以让第i位后面的数字随便填写
for(int i = cnt - 1; i >= 1; i--)
{
for(int j = 0; j < num[i]; j++)
ans = (ans * qmi(m, f[i][k][j]) % mod) % mod;
if(num[i]) k--; //相当于把第i位固定 因为i有1 所以k--
if(k < 0) break;
}
} //由于一直卡上界,所以其实一直没有遇到等于n的情况
//所以最后对n暴力分解数位处理一下
ans = ((ans % mod) * (len(n) % mod)) % mod;
printf("%lld\n", ans);
} inline void init()
{
scanf("%lld", &n);
//dp预处理
f[1][0][0] = f[1][1][1] = 1;
for(int i = 1; i <= 60; i++)
{
for(int j = 0; j <= i; j++)
{
f[i+1][j+1][1] += f[i][j][0] + f[i][j][1];
f[i+1][j][0] += f[i][j][0] + f[i][j][1];
}
} work(n);
} int main()
{
init();
return 0;
}

luogu_4317: 花神的数论题的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  3. 【LG4317】花神的数论题

    [LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...

  4. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  5. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  6. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  7. 【bzoj3209】: 花神的数论题 数论-DP

    [bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是  然后快速幂 求a[i]可以用DP 设在二进制中从 ...

  8. bzoj3209:3209: 花神的数论题

    觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...

  9. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

随机推荐

  1. Python中的垃圾回收机制(转)

    原文:https://foofish.net/python-gc.html GC作为现代编程语言的自动内存管理机制,专注于两件事:1. 找到内存中无用的垃圾资源 2. 清除这些垃圾并把内存让出来给其他 ...

  2. In-Memory:哈希索引

    SQL Server 2016支持哈希查找,用户可以在内存优化表(Memory-Optimized Table)上创建哈希索引(Hash Index),使用Hash 查找算法,实现数据的极速查找.在使 ...

  3. 谨记不要在MySQL中使用“utf8”编码

    掉坑回顾: 最近在工作中遇到一个BUG,用于记录客户昵称的数据表,在插入带有表情的字符时候报错.使用的存储引擎是INNODB,当我查看数据库字段的时候确实是设置的utf8,我传入的字符也是utf8的编 ...

  4. WebApi自定义全局异常过滤器及返回数据格式化

    WebApi在这里就不多说了,一种轻量级的服务,应用非常广泛.我这这里主要记录下有关 WebApi的相关知识,以便日后使用. 当WebApi应用程序出现异常时,我们都会使用到异常过滤器进行日志记录,并 ...

  5. C#生成/调用动态链接库

    参考地址:https://www.cnblogs.com/qq4004229/archive/2013/01/30/2882409.html 一.需求描述 (1)用代码生成动态链接库 (2)用C#代码 ...

  6. opencv简单卷积运用

    import cv2 as cv import numpy as np img=cv.imread('learn.jpg',cv.IMREAD_GRAYSCALE) cv.imshow('first ...

  7. python基础--数据结构之字典

    字典 特点:无序,键唯一 目录 1.字典的创建 2. .setdefault 的使用 3.  字典中的查找 4.字典中的改 5. 字典中的删除 6. 打印字典的方法 7. 格式化字符串 8. 合并字符 ...

  8. CSS 多列布局

    CSS3 新增多列布局适合排版很长的文字内容,让其多列显示. 一.多列布局 语法格式: columns:column-width | column-count; column-width:定义每列的宽 ...

  9. PHP应用如何对接微信公众号JSAPI支付

    微信支付的产品有很多,1. JSAPI支付  2. APP支付  3. Native支付  4.付款码支付  5. H5支付. 其中基于微信公众号开发的应用选择“JSAPI支付“产品,其他APP支付需 ...

  10. pandas 之 特征工程

    import numpy as np import pandas as pd So far(到目前为止) in this chapter we've been concerned with rearr ...