花神的数论题

题意描述:
  • 设\(sum(i)\)表示\(i\)的二进制数中\(1\)的个数。
  • 给定一个整数\(N\),求\(\prod_{i=1}^Nsum(i)\)。
输入描述:
  • 输入包含一个正整数\(N(N\leq10^{15})\)。
输出描述:
  • 一个数,答案模\(10000007\)的值。
解题思路:
  • 数位\(dp\)+快速幂。
  • 令\(f(i,j,k)\)表示以\(k\)开头的\(i\)位数中\(1\)的个数为\(j\)的数量。有转移方程
    • \(f(i,j,0)=f(i-1,j,0)+f(i-1,j,1)\)
    • \(f(i,j,1)=f(i-1,j-1,0)+f(i-1,j-1,1)\)
    • 这个很好理解,就是往最高位填\(0/1\)。
  • 设\(sum(i)==x\)的\(i\)有\(tot\)个,那么他对答案的贡献显然就是\(x^{tot}\)。
  • 所以这时候枚举\(x\)就行,显然对于\(N(N\leq 10^{15})\)而言,不会枚举超过\(60\)次。
  • 详见代码:
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 70, mod = 10000007;
ll f[maxn][maxn][2];
ll n, ans; inline ll qmi(ll a, ll b)
{
ll res = 1;
while(b)
{
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1ll;
} return res % mod;
} //x对应的二进制中有多少个1
inline ll len(ll x)
{
ll res = 0;
while(x)
{
if(x & 1ll) res++;
x >>= 1ll;
}
return res;
} int num[maxn], cnt;
inline void work(ll x)
{
cnt = 0; ans = 1;
while(x) //分解数位
{
num[++cnt] = x&1;
x >>= 1;
} //枚举m, 求出有多少i,有sum(i)=m
for(int m = 1; m <= cnt; m++)
{
for(int i = 1; i < cnt; i++)
ans = (ans * qmi(m, f[i][m][1]) % mod) % mod;
//先枚举位数比n要小的数 //开始处理位数和n相同的数字
int k = m;
//如果n的最高位是1的话
//其实相当于把最高位固定了
if(num[cnt]) k--; //从高位往低位枚举
//之后我们让第i位小于n的第i位
//这样可以让第i位后面的数字随便填写
for(int i = cnt - 1; i >= 1; i--)
{
for(int j = 0; j < num[i]; j++)
ans = (ans * qmi(m, f[i][k][j]) % mod) % mod;
if(num[i]) k--; //相当于把第i位固定 因为i有1 所以k--
if(k < 0) break;
}
} //由于一直卡上界,所以其实一直没有遇到等于n的情况
//所以最后对n暴力分解数位处理一下
ans = ((ans % mod) * (len(n) % mod)) % mod;
printf("%lld\n", ans);
} inline void init()
{
scanf("%lld", &n);
//dp预处理
f[1][0][0] = f[1][1][1] = 1;
for(int i = 1; i <= 60; i++)
{
for(int j = 0; j <= i; j++)
{
f[i+1][j+1][1] += f[i][j][0] + f[i][j][1];
f[i+1][j][0] += f[i][j][0] + f[i][j][1];
}
} work(n);
} int main()
{
init();
return 0;
}

luogu_4317: 花神的数论题的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  3. 【LG4317】花神的数论题

    [LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...

  4. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  5. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  6. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  7. 【bzoj3209】: 花神的数论题 数论-DP

    [bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是  然后快速幂 求a[i]可以用DP 设在二进制中从 ...

  8. bzoj3209:3209: 花神的数论题

    觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...

  9. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

随机推荐

  1. Java随堂笔记一

    今天开始了Java的正式复习,因为有两三年没有接触Java了,所以打算开始从头复习. 下面使课堂的一些随堂笔记,如果有遗忘,我可以随时翻阅该博客. public static void main(St ...

  2. Java笔记_静态变量和实例变量的区别

    这里简单做一下笔记,区分Java全局变量里的静态变量与实例变量. 1.Java里的全局变量 首先了解Java里的全局变量,也叫成员变量. 特点: (1).一个类中既不在方法体内,也不在程序块内定义的变 ...

  3. linux启动tomcat很久或者很慢Tomcat启动时卡在“INFO: Deploying web application directory ......”的解决方法

    解决方案: 找到jdk1.x.x_xx/jre/lib/security/java.security文件,在文件中找到securerandom.source这个设置项,将其改为: securerand ...

  4. ELK学习笔记之Kibana权限控制和集群监控

    详细请参考如下四篇博客,注意ELK6中移除了Xpack的默认账户和密码,需要手动设置 Kibana安全特性之权限控制 ELK 集群 Kibana 使用 X-Pack 权限控制,监控集群状态,警报,监视 ...

  5. vim:spell语法

    先说结论,在vim配置文件加入: setlocal spell spelllang=en_us,cjk 1.spell指开启检查模式. 2.spelllang用于指定检查的种类. 3.cjk,指中国, ...

  6. Redis 获取和设置密码

    1.config get reuqirepass //获取当前密码 2.config set requirepass "password"//设置当前密码,双引号里面为密码

  7. Wireshark教程之二:Wireshark捕获数据分析

    使用 Wireshark 选择需要抓包的网络方式,并设置过滤器条件,当有数据通信后即可抓到对应的数据包,这里将分析其每一帧数据包的结构. 以HTTP协议为例,一帧数据包一般包括以下几个部分: Fram ...

  8. 几分钟打造超级好看又好用的zsh command line环境

    source: https://www.pexels.com/photo/office-working-app-computer-97077/ 注:这篇适用于用MAC 开发的developer 身为程 ...

  9. 用axios.all处理并发请求

    如果我们需用在两个接口同时完成后,然后在执行一些逻辑,我们可以使用axios.all处理并发请求,如下所示: function getUserAccount() { return axios.get( ...

  10. HTML不换行,多余用省略号代替

    最主要的css样式: white-space: nowrap; overflow: hidden; text-overflow: ellipsis; 例子: <!DOCTYPE html> ...