luogu_4317: 花神的数论题
花神的数论题
题意描述:
- 设\(sum(i)\)表示\(i\)的二进制数中\(1\)的个数。
- 给定一个整数\(N\),求\(\prod_{i=1}^Nsum(i)\)。
输入描述:
- 输入包含一个正整数\(N(N\leq10^{15})\)。
输出描述:
- 一个数,答案模\(10000007\)的值。
解题思路:
- 数位\(dp\)+快速幂。
- 令\(f(i,j,k)\)表示以\(k\)开头的\(i\)位数中\(1\)的个数为\(j\)的数量。有转移方程
- \(f(i,j,0)=f(i-1,j,0)+f(i-1,j,1)\)
- \(f(i,j,1)=f(i-1,j-1,0)+f(i-1,j-1,1)\)
- 这个很好理解,就是往最高位填\(0/1\)。
- 设\(sum(i)==x\)的\(i\)有\(tot\)个,那么他对答案的贡献显然就是\(x^{tot}\)。
- 所以这时候枚举\(x\)就行,显然对于\(N(N\leq 10^{15})\)而言,不会枚举超过\(60\)次。
- 详见代码:
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 70, mod = 10000007;
ll f[maxn][maxn][2];
ll n, ans;
inline ll qmi(ll a, ll b)
{
ll res = 1;
while(b)
{
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1ll;
} return res % mod;
}
//x对应的二进制中有多少个1
inline ll len(ll x)
{
ll res = 0;
while(x)
{
if(x & 1ll) res++;
x >>= 1ll;
}
return res;
}
int num[maxn], cnt;
inline void work(ll x)
{
cnt = 0; ans = 1;
while(x) //分解数位
{
num[++cnt] = x&1;
x >>= 1;
}
//枚举m, 求出有多少i,有sum(i)=m
for(int m = 1; m <= cnt; m++)
{
for(int i = 1; i < cnt; i++)
ans = (ans * qmi(m, f[i][m][1]) % mod) % mod;
//先枚举位数比n要小的数
//开始处理位数和n相同的数字
int k = m;
//如果n的最高位是1的话
//其实相当于把最高位固定了
if(num[cnt]) k--;
//从高位往低位枚举
//之后我们让第i位小于n的第i位
//这样可以让第i位后面的数字随便填写
for(int i = cnt - 1; i >= 1; i--)
{
for(int j = 0; j < num[i]; j++)
ans = (ans * qmi(m, f[i][k][j]) % mod) % mod;
if(num[i]) k--; //相当于把第i位固定 因为i有1 所以k--
if(k < 0) break;
}
}
//由于一直卡上界,所以其实一直没有遇到等于n的情况
//所以最后对n暴力分解数位处理一下
ans = ((ans % mod) * (len(n) % mod)) % mod;
printf("%lld\n", ans);
}
inline void init()
{
scanf("%lld", &n);
//dp预处理
f[1][0][0] = f[1][1][1] = 1;
for(int i = 1; i <= 60; i++)
{
for(int j = 0; j <= i; j++)
{
f[i+1][j+1][1] += f[i][j][0] + f[i][j][1];
f[i+1][j][0] += f[i][j][0] + f[i][j][1];
}
} work(n);
}
int main()
{
init();
return 0;
}
luogu_4317: 花神的数论题的更多相关文章
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- 【洛谷】4317:花神的数论题【数位DP】
P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...
- 【LG4317】花神的数论题
[LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- 【bzoj3209】: 花神的数论题 数论-DP
[bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是 然后快速幂 求a[i]可以用DP 设在二进制中从 ...
- bzoj3209:3209: 花神的数论题
觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
随机推荐
- mycat在windows环境下安装和启动
1.下载从如下地址下载mycat的安装包: http://www.mycat.io/ eg:Mycat-server-1.6.6.1-release-20181031195535-win.tar.gz ...
- C++之拷贝控制 (Copy Control)
只有2种成员 值成员: 指针成员: 依实现可分为raw pointer / shared_ptr; 现在,仅考虑第③种:资源对象共享 角度来考虑拷贝控制 类的两种语义:值语义.似指针 编译器提供的de ...
- 多态性 类(class)的四则运算
我们知道c语言中可以整型数据或浮点型等做四则运算,而自己写的类也可做四则运算,是不是感觉奇怪,可以看以下代码是如何完成类之间的四则运算: #include "stdafx.h" ...
- 使用 HttpWebRequest 类做 POST 请求没有应反
这几天给系统做第三方集成, 需要调用另一个软件的一个接口, 通过 HTTP 的方式调用,调用代码也挺简单的: string serviceUrl = string.Format("{0}/{ ...
- 玩转zynq7010+ FPGA点亮三色灯
前期主要以开发Z-TURN的PL部分为主,以期望了解该芯片的逻辑架构和系统总线,以及所有外设,后面在开始PS部分的开发,闲话少说,先看整个7z010的系统框图,所有开发目前基于ISE14.6来设置, ...
- powershell 远程下载并执行
远程下载文件到本地并执行cmd.exe /c powershell.exe -ExecutionPolicy bypass -noprofile -windowstyle hidden (new-ob ...
- android scroller用法及属性
正文 一.结构 public class Scroller extends Object java.lang.Object android.widget.Scroller 二.概述 这个类封装了滚动操 ...
- linux-Windows文件上传Linux
使用Xshell5工具: 1.使用cmd在Windows上压缩文件 2.在Xshell5上使用SSH协议与Linux服务器建立连接 3.新建文件传输 4.切换到Linux文件目录 5.使用put命令进 ...
- 在 Vim 中,删除 ^@ 符号的几种方法
在 Vim 中,^@ 表示 ASCII 码中的 NULL 字符,编码为 0x00,占用一个字节. 删除方法 方法1,采用 <CTRL-V><CTRL-J> 或 <CTRL ...
- Lnmp环境安装禅道项目管理软件
1.本地环境 CentOS Linux release 7.5.1804 (Core) PHP 7.1.0-dev (cli) mysql Ver 14.14 Distrib 5.7.22 nginx ...