CF933E A Preponderant Reunion DP
题解搬运工
设原问题为问题A。每一次减少\(\min\{p_i , p_{i+1}\}\)难以处理,我们考虑将限制变得宽松一些:每一次可以减少\([1,\min\{p_i , p_{i+1}\}]\)的任意值,需要满足的终止条件与问题A相同。我们称其为问题B,设区间\([l,r]\)在问题B操作下的答案为\(g_{l,r}\)。显然问题B的答案要小于等于问题A。
再考虑:在问题AB中,最后的结果一定是两个正数之间有一段0。我们再考虑:设\(f_{l,r}\)表示只操作区间\([l,r]\)使得区间\([l,r]\)的值全部小于等于\(0\)(可以为负)的最小代价,设其为问题C。不难发现:设\(c_l = p_l\),\(c_i = \max\{p_i - c_{i-1} , 0\} , i \in [l+1,r]\),那么\(f_{l,r} = \sum\limits_{i=l}^r c_i\)。
首先,\(f_{l,l} = g_{l-1,l+1}\),\(f_{l,l+1} = g_{l-1,l+2}\),而
\(f_{l,r} = \sum\limits_{i=l}^rc_i = \sum\limits_{i=l}^{r-2}c_i + c_{r-1} + \max\{p_r - c_{r-1} , 0\} = f_{l,r-2} + \max\{p_r , c_{r-1}\} \geq f_{l,r-2} + f_{r,r}\)
不难发现中间漏掉了一个\(r-1\),相当于\(r-1\)不变为\(0\),而\([l,r-2]\)和\([r,r]\)变为\(0\),也就是说在最优情况中\(r-1\)会保留下来,即\(g_{l-1,r+1} = g_{l-1,r-1} + g_{r-1,r+1}\)。不断递归下去就可以知道\(g_{l-1,r+1}\)的最优情况中,极长的\(0\)连续段不会超过\(2\)。
因为极长\(0\)段小于等于\(2\),所以问题C中不会出现负数,所以问题C中构造的解在问题B中一定满足。至此我们完成了C到B的转化。
同时注意到问题B中的所有操作一定会让若干个数变为\(0\),所以在问题B中的可行操作在问题A中也一定可行(这个感性理解好了,不知道怎么严格证明),即在问题A中极长连续\(0\)段长度不会超过\(2\)
接下来考虑DP:设\(f_{i}\)表示以\(i\)结尾、选择\(i\)的\([1,i]\)的最优答案,转移考虑其之前选择多少个\(0\),并记下转移点。值得注意的是如果存在两个\(0\),那么最少步数一定是\(\max\{p_{i-1} , p_{i-2}\}\),即先对\(p_{i-1} , p_{i-2}\)做一次,剩下的一次再做完。最后还原DP结果输出构造方案即可。
值得注意的一点是如果\(f_i\)的操作过程中使得某个数变为负数是一定不优的,由问题C就可以知道这一点。
CF933E A Preponderant Reunion DP的更多相关文章
- 【CF933E】A Preponderant Reunion(动态规划)
[CF933E]A Preponderant Reunion(动态规划) 题面 CF 洛谷 题解 直接做很不好搞,我们把条件放宽,我们每次可以选择两个相邻的非零数让他们减少任意值,甚至可以减成负数(虽 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
随机推荐
- NOI2019 Day1游记
Day1挂了,没什么好说的... 开场T1想到70分暴力就走人了,后来发现可以写到85...(听说有人写dfs过了95?233333) T2刚了2个多小时,得到每次只在中间填最大值的结论后不会区间DP ...
- 一起学Makefile(四)
变量的定义 makefile中的变量,与C语言中的宏类似,它为一个文本字符串(变量的值,其类型只能是字符串类型)提供了一个名字(变量名). 变量的基本格式: 变量名 赋值符 变量值 变量名指的 ...
- vue 百度地图多标注展示和点击标注进行的提示
index.html中加入script <script type="text/javascript" src="http://api.map.baidu.com/a ...
- Python 元编程
1.为函数添加包装器 总是存在这样的场景,在一个函数执行前后需要做一些操作处理,常见于日志创建.权限认证或者性能分析等.但有一个问题存在,那就是被装饰的函数,其元信息会丢失,函数引用会指向装饰器的返回 ...
- unity EditorGUILayer绘制报错
最近在开发一个可视化工具的时候,遇到了一个代码错误,小小的记录一下 具体的报错信息:ArgumentException: Getting control 0's position in a group ...
- 【转】Android 将自己的应用改为系统应用
所谓系统程序就是system/app目录中的程序,普通应用转换成系统程序后有稳定.减少内存(DATA)空间占用.恢复出厂设置后不会消失.修改系统时间.调用隐藏方法.系统关机重启.静默安装升级卸载应用等 ...
- SQLite R*Tree 模块测试
目录 SQLite R*Tree 模块测试 1.SQLite R*Tree 模块特性简介 2.SQLite R*Tree 模块简单测试代码 SQLite R*Tree 模块测试 相关参考: MySQL ...
- Python用积分思想计算圆周率
[文本出自天外归云的博客园] 早上起来突然想求圆周率,1单位时圆的面积. 代码如下: from math import pow, sqrt def calc_circle_s_with(r, dy, ...
- IfcCircle
An IfcCircle is a curve consisting of a set of points having equal distance from the center. NOTE A ...
- golang中defer的正确使用方式(源自深入解析go)
3.4 defer关键字 defer和go一样都是Go语言提供的关键字.defer用于资源的释放,会在函数返回之前进行调用.一般采用如下模式: f,err := os.Open(filename) i ...