NOIP 2002 产生数
洛谷 P1037 产生数
https://www.luogu.org/problemnew/show/P1037
JDOJ 1298: [NOIP2002]产生数 T3
https://neooj.com:8082/oldoj/problem.php?id=1298
题目描述
给出一个整数n(n<10^{30})n(n<1030)和kk个变换规则(k \le 15)(k≤15)。
规则:
一位数可变换成另一个一位数:
规则的右部不能为零。
例如:n=234n=234。有规则(k=2k=2):
22->55
33->66
上面的整数234234经过变换后可能产生出的整数为(包括原数):
234234
534534
264264
564564
共44 种不同的产生数
问题:
给出一个整数 nn 和kk 个规则。
求出:
经过任意次的变换(00次或多次),能产生出多少个不同整数。
仅要求输出个数。
输入输出格式
输入格式:
键盘输入,格式为:
n knk
x_1 y_1x1y1
x_2 y_2x2y2
... ...
x_n y_nxnyn
输出格式:
屏幕输出,格式为:
11个整数(满足条件的个数):
输入输出样例
234 2
2 5
3 6
4
#include<cstdio>
#include<cstring>
int z,ans=,k;
int a[],b[];
int t[];
bool v[];
char s[];
void dfs(int e)
{
for(int i=;i<=k;i++)
{
if(!v[b[i]]&&a[i]==e)
{
z++;
v[b[i]]=true;
dfs(b[i]);
}
}
}
int main()
{
scanf("%s",s);
scanf("%d",&k);
for(int i=;i<=k;i++)
scanf("%d%d",&a[i],&b[i]);
int l=strlen(s);
for(int i=;i<l;i++)
{
z=;
int c=s[i]=s[i]-'';
memset(v,false,sizeof(v));
v[c]=true;
dfs(c);
t[i]=+z;
}
int k[][];
memset(k,,sizeof(k));
for(int i=l;i>=;i--)
t[i]=t[i-];
k[][]=;
k[][]=;
k[][]=t[];
for(int i=;i<=l;i++)
{
k[i][]=k[i-][];
int x=;
for(int j=;j<=k[i][];j++)
{
k[i][j]=k[i-][j]*t[i]+x;
x=k[i][j]/;
if(k[i][j]>=)
k[i][j]%=;
}
if(x)
{
k[i][]++;
k[i][k[i][]]=x;
}
}
for(int i=k[l][];i>=;i--)
printf("%d",k[l][i]);
}
NOIP 2002 产生数的更多相关文章
- NOIP 2002 选数
洛谷 P1036 选数 洛谷传送门 JDOJ 1297: [NOIP2002]选数 T2 JDOJ传送门 Description 已知 n 个整数 x1,x2,-,xn,以及一个整数 k(k< ...
- NOIP 2002提高组 选数 dfs/暴力
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…, ...
- [NOIP 2002普及组]产生数(floyd+高精度)
https://www.luogu.org/problem/P1037 题目描述 给出一个整数 n(n<1030) 和 k 个变换规则(k<=15). 规则: 一位数可变换成另一个一位数: ...
- NOIP 2002过河卒 Label:dp
题目描述 如图,A 点有一个过河卒,需要走到目标 B 点.卒行走规则:可以向下.或者向右.同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点.例如 ...
- NOIP 2002 提高组 字串变换
题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B ...
- 2018.10.14 NOIP训练 猜数游戏(决策单调性优化dp)
传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L ...
- 2018.07.08 NOIP模拟 好数(线段树)
好数 题目背景 SOURCE:NOIP2016-AHSDFZ T3 题目描述 我们定义一个非负整数是"好数",当且仅当它符合以下条件之一: 1. 这个数是 0 或 1 . 2. 所 ...
- 过河卒 NOIp 2002 dp
题目描述 棋盘上AAA点有一个过河卒,需要走到目标BBB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CCC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦 ...
- [ NOIP 2002 ] TG
\(\\\) \(\#A\) 均分纸牌 有\(N\)堆纸牌,每堆有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动给其左右任意一侧的纸牌堆,求将所有的牌堆牌数都变为平均值最 ...
随机推荐
- 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)
\(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...
- 删除cookie的封装
remove cookie(key,options){ options=options||{}; options.expires=-1; 删除cookie,其实就是修改cookie,将之前设置好的co ...
- Vue中MVVM模式的双向绑定原理 和 代码的实现
今天带大家简单的实现MVVM模式,Object.defineProperty代理(proxy)数据 MVVM的实现方式: 模板编译(Compile) 数据劫持(Observer) Object ...
- 大话设计模式Python实现-建造者模式
建造者模式(Builder Pattern):将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示 下面是一个建造者模式的demo #!/usr/bin/env python # ...
- vue中引入mintui、vux重构简单的APP项目
最近在学习vue时也了解到一些常用的UI组件,有用于PC的和用于移动端的.用于PC的有:Element(饿了么).iView等:用于移动端APP的有Vux.Mint UI(饿了么).Vant(有赞团队 ...
- mysql启动报错:Failed to start LSB: start and stop MySQL
报错信息: [root@youxx- bin]# service mysql status Redirecting to /bin/systemctl status mysql.service ¡ñ ...
- centOS禁止普通用户su到root
1.关于su的相关权限涉及到两个文件,分别为/etc/pam.d/su和/etc/login.defs两个配置文件. 2.禁止普通用户su到root,配置如下: 去除/etc/pam.d/su文件中如 ...
- JavaScript 设计模式分类
设计模式的目的是为了提高代码的整洁性.降低代码的资源占用量. JS中的设计模式可分为以下三种: 1. 创建型设计模式 说明:专注于处理对象创建的机制,以合适的方式创建对象,以此来降低创建对象过程的复杂 ...
- Python【day 13】内置函数01
1.python3.6.2 一共有 68个内置函数2.分成6个大类 1.反射相关-4个 2.面向对象相关-9个 3.作用域相关--2个 1.globlas() #注意:最后是s,复数形式 查看全局作用 ...
- SpringMVC 之 上传文件
一.需求: 利用SpringMVC实现上传文件的功能 二.思路: 1.我们可以在SpringMVC中,通过配置一个MultipartResolver来上传文件. 2.通过MultipartFile f ...