CF-Technocup3 D Optimal Subsequences
D Optimal Subsequences
http://codeforces.com/contest/1227/problem/D2
显然,每次求的k一定是这个序列从大到小排序后前k大的元素。
考虑如何做才能使其字典序最小。我们设p为第k大的元素。
首先,这k个数是确定的。
其次,对于比p大的所有元素,他们是必须选的。
所以,欲使这个序列字典序最小,其实就是让所有p出现的位置
尽量靠前。
那做法就很显然了:先离散化,搞出来一个相对排名,用主席树
维护相对排名。每次查询,二分答案,check就查一下root[1]到
root[mid]中权值排名大于p的排名+min(p的上限个数,root[1]
到root[mid]中p的出现次数)和pos的关系就好。
其实离线搞更方便一些,也不用可持久化。。
上代码
#include<bits/stdc++.h>
using namespace std;
#define re register int
#define F(x,y,z) for(re x=y;x<=z;x++)
#define FOR(x,y,z) for(re x=y;x>=z;x--)
typedef long long ll;
#define I inline void
#define IN inline int
I read(int &res){
res=0;re g=1;register char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')g=-1;
ch=getchar();
}
while(isdigit(ch)){
res=(res<<3)+(res<<1)+(ch^48);
ch=getchar();
}
res*=g;
}
struct P{
int w,id,v;
friend bool operator < (P x,P y){
return x.w>y.w;
}
}p[202000];
struct Tree{
int lc,rc,w;
}t[6060000];
#define L t[k].lc
#define R t[k].rc
int n,m,tot,X,Y,sum,pos,lim,a[202000],b[202000],f[202000],len[202000],root[202000];
I modi(int &k,int k1,int l,int r,int x){
k=++tot;
L=t[k1].lc;R=t[k1].rc;t[k].w=t[k1].w;
if(l==r){
t[k].w++;
return;
}
re mid=(l+r)>>1;
if(x<=mid)modi(L,t[k1].lc,l,mid,x);
else modi(R,t[k1].rc,mid+1,r,x);
t[k].w=t[L].w+t[R].w;
}
IN ques(int k,int l,int r,int x,int y){
if(x>r||y<l)return 0;
if(x<=l&&r<=y)return t[k].w;
re mid=(l+r)>>1;
return ques(L,l,mid,x,y)+ques(R,mid+1,r,x,y);
}
IN divided(int x,int y){
if(x==y)return x;
re mid=(x+y)>>1;
//cout<<ques(root[mid],1,sum,1,pos)<<"!"<<endl;
if(ques(root[mid],1,sum,1,pos-1)+min(ques(root[mid],1,sum,pos,pos),lim)>=Y)y=mid;
else x=mid+1;
return divided(x,y);
}
int main(){
read(n);
F(i,1,n){
read(a[i]);
p[i].w=a[i];
p[i].id=i;
}
sort(p+1,p+1+n);
m=0;
p[0].w=p[1].w+1;
f[0]=0;
F(i,1,n){
if(p[i].w!=p[i-1].w)m++,f[m]=i;
b[p[i].id]=m;
p[i].v=m;
}
tot=0;
sum=m;
//cout<<sum<<endl;
F(i,1,n){
modi(root[i],root[i-1],1,sum,b[i]);
}
read(m);
while(m--){
read(X);read(Y);
pos=p[X].v;lim=X-f[pos]+1;
//cout<<pos<<" ";
int P=divided(1,n);
//cout<<P<<" ";
cout<<a[P]<<endl;
}
return 0;
}
CF-Technocup3 D Optimal Subsequences的更多相关文章
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心
D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...
- CF 689D - Friends and Subsequences
689D - Friends and Subsequences 题意: 大致跟之前题目一样,用ST表维护a[]区间max,b[]区间min,找出多少对(l,r)使得maxa(l,r) == minb( ...
- CF 314C Sereja and Subsequences(树状数组)
题目链接:http://codeforces.com/problemset/problem/314/C 题意:给定一个数列a.(1)写出a的不同的所有非下降子列:(2)定义某个子列的f值为数列中各个数 ...
- CF1227D Optimal Subsequences
思路: 首先对于单个查询(k, p)来说,答案一定是a数组中的前k大数.如果第k大的数字有多个怎么办?取索引最小的若干个.所以我们只需对a数组按照值降序,索引升序排序即可. 多个查询怎么办?离线处理. ...
- Codeforces 1262D Optimal Subsequences(BIT+二分)
首先比较容易想到肯定是前k大的元素,那么我们可以先对其进行sort,如果数值一样返回下标小的(见题意),接下里处理的时候我们发现需要将一个元素下标插入到有序序列并且需要访问第几个元素是什么,那么我们可 ...
- Optimal Subsequences(主席树)
题意: 给定一个序列,长度为n(<=2e5),有m(<=2e5)个询问,每个询问包含k和pos,要从原序列中选出一个长度为k的子序列,要求是这个序列的和是所有长度为k的序列中最大的,且是字 ...
- D2. Optimal Subsequences (Hard Version) 主席树
题目链接:https://codeforces.com/contest/1262/problem/D2 将数组按大到小排序(相同大小的按下标由小到大排序),依次将排序后的每个数在原数组中的位置放入主席 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) - D2. Optimal Subsequences (Hard Version)(主席树)
题意:一共有$n$个数,$m$次询问,每次询问包括$k.pos$两个数,需要你从这$n$个数里面找出$k$个数,使得他们的总和最大,如果有多种情况,找出序号字典序最小的一组,然后输出这个序列中第$po ...
- codeforces 1262D Optimal Subsequences 主席树询问第k小
题意 给定长度为\(n\)的序列\(a\),以及m个询问\(<k,pos>\),每次询问满足下列条件的子序列中第\(pos\)位的值为多少. 子序列长度为\(k\) 序列和是所有长度为\( ...
随机推荐
- 使用selenium谷歌浏览器驱动配置:
from selenium import webdriver#导入谷歌浏览器的chrome_driverchrome_driver = r"C:\python36\Lib\site-pack ...
- LeetCode 838. Push Dominoes
原题链接在这里:https://leetcode.com/problems/push-dominoes/ 题目: There are N dominoes in a line, and we plac ...
- 关于#pragma once和#ifndef
[1]#pragma once这个宏有什么作用? 为了避免同一个头文件被包含(include)多次,C/C++中有两种宏实现方式:一种是#ifndef方式:另一种是#pragma once方式.在能够 ...
- vue解决大文件断点续传
一.概述 所谓断点续传,其实只是指下载,也就是要从文件已经下载的地方开始继续下载.在以前版本的HTTP协议是不支持断点的,HTTP/1.1开始就支持了.一般断点下载时才用到Range和Content- ...
- 文件搜索命令find
1.路径加文件名搜索(find): 查找的是etc目录下的以init为名字的文件. 加通配符后为模糊搜索,只要文件名中含有init即可. 查找etc目录下以init开头的七位文件名. 2.搜索时不区分 ...
- leetcode 一些算法题及答案
1. 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这 ...
- CF1237E 【Balanced Binary Search Trees】
首先我们要注意到一个性质:由于根与右子树的根奇偶性相同,那么根的奇偶性与\(N\)相同 然后我们发现对于一个完美树,他的左右两个儿子都是完美树 也就是说,一颗完美树是由两棵完美树拼成的 注意到另一个性 ...
- UOJ269【清华集训2016】如何优雅地求和【数论,多项式】
题目描述:求 $$\sum_{k=0}^nf(k)\binom{n}{k}x^k(1-x)^{n-k}$$ 输入$n$,$f(x)$的次数上界$m$,$x$,$f(0,1,\ldots,m)$,对$9 ...
- 最大子段和(洛谷 P1115)
题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入格式 第一行是一个正整数NNN,表示了序列的长度. 第二行包含NNN个绝对值不大于100001000010000的整数AiA_iA ...
- [总结] MSF攻击数据库服务
0x01 攻击Mysql服务 1.1 目标探测 auxiliary/scanner/mysql/mysql_version 常用于内网中的批量mysql主机发现: 1.2 爆破登录 auxiliary ...