动态规划----最长公共子序列(C++实现)
最长公共子序列
- 题目描述:给定两个字符串s1 s2 … sn和t1 t2 … tm 。求出这两个字符串的最长公共子序列的长度。字符串s1 s2 … sn的子序列指可以表示为
…
{ i1 < i2 < … < ik }的序列。
- 输入样例
2
asdf
adfsd
123abc
abc123abc
- 输出样例
3
6
- 解题思路:
这道题是被称为最长公共子序列的问题(LCS,Longest Common Subsequence)的著名问题。这道题我们是用动态规划的思想来做的。我们先拿第一组测试用例,asdf 与 adfsd 作为例子来看一下这道题的思路。上图!!
j / i | 1(a) | 2(s) | 3(d) | 4(f) | |
1(a) | |||||
2(d) | |||||
3(f) | |||||
4(s) | |||||
5(d) |
做这种题,我们要用一个二维数组(dp[MAX_N][MAX_N])来存放每一个状态的值。如图所示,横向代表i、纵向代表j,那么,每一个网格的值是怎么来的呢。在这里我们把每一个状态即dp[i][j] 看做 s1 … si 和 t1 … tj 的LCS的长度。由此我们,s1 … s(i+1) 和 t1 … t(j+1) 对应的公共子列长度可能是:
当s(i+1) == t(j+1),在 s1 … si 和 t1 … tj 的公共子列末尾追加上s(i+1) 。
否则则可能是 s1 … si 和 t1 … t(j+1) 的公共子列或者 s1 … s(i+1) 和 t1 … tj 的公共子列最大值。
对应以下一个公式:
有了上面的公式我们就可以写代码了:
//最长公共子序列
#include<iostream>
#include<string>
#include<cstring>
#include<stdlib.h>
#define MAX 1001
using namespace std;
int dp[MAX][MAX];
int main()
{
int N;
cin >> N;
while(N--)
{
string a,b;
cin >> a >> b;
memset(dp,0,sizeof(dp));
int len_a=a.size(),len_b=b.size();
for(int i=0;i<len_a;i++)
{
for(int j=0;j<len_b;j++)
{
if(a.at(i)==b.at(j))
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
}
}
cout << dp[len_a][len_b] << endl;
a.clear();
b.clear();
}
return 0;
}
动态规划----最长公共子序列(C++实现)的更多相关文章
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
- 算法导论-动态规划(最长公共子序列问题LCS)-C++实现
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ...
- 动态规划---最长公共子序列 hdu1159
hdu1159 题目要求两个字符串最长公共子序列, 状态转换方程 f[i][j]=f[i-1][j-1]+1; a[i]=b[j]时 f[i][j]=MAX{f[i-1][j],f[i][j-1] ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- 动态规划----最长公共子序列(LCS)问题
题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2 则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...
- 动态规划———最长公共子序列(LCS)
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划——最长公共子序列&&最长公共子串
最长公共子序列(LCS)是一类典型的动归问题. 问题 给定两个序列(整数序列或者字符串)A和B,序列的子序列定义为从序列中按照索引单调增加的顺序取出若干个元素得到的新的序列,比如从序列A中取出 A ...
随机推荐
- redis发布(pub)、订阅(sub)模式
前言:redis提供了很多种功能或模式,可以运用在不同的场景下,今天记录下redis中的发布.订阅模式的基本使用 注redis安装及主从搭建请参考我其他博文http://www.cnblogs.com ...
- 洛谷P4303 [AHOI2006]基因匹配(树状数组)
传送门 我已经连这种傻逼题都不会了orz 正常的dp是$O(n^2)$的,枚举第一个数组的$j$,然后第二个数组的$k$,如果相等,则$dp[i]=dp[j]+1$,否则$dp[i]=dp[j]$ 然 ...
- JavaScript中this的使用方法总结
JavaScript中this的使用方法总结 在JavaScript中,this的使用分为四种场景,具体请参考阮一峰老师关于this的讲解 第一种情况是纯函数使用 var x =1 ; functio ...
- Ocelot(十一)- 服务发现
Ocelot允许您指定服务发现提供程序,并使用它来查找Ocelot正在将请求转发给下游服务的主机和端口.目前,这仅在GlobalConfiguration部分中受支持,这意味着所有ReRoute将使用 ...
- git上拉取tag,识别最新tag在此版本上新增tag
通过shell 脚本自动获取最新tag,并输入最新版本后,推到git上 # 拉取分支上现有的tags git fetch --tags echo -e "所有tag列表" git ...
- WPF-按钮美化
我们不多哔哔,先放图: 美化按钮背景: 当我们用系统默认的按钮风格似乎太老套,而且不太美观,某些情况下我们需要对按钮进行美化和重绘,只有这样才能满足我们的需要 按钮美化思维引导: 图中1 为控件Bor ...
- DFS Codeforces Round #306 (Div. 2) B. Preparing Olympiad
题目传送门 /* DFS: 排序后一个一个出发往后找,找到>r为止,比赛写了return : */ #include <cstdio> #include <iostream&g ...
- 加密解密(3)Bob到CA申请证书过程
网络安全中最知名的人物大概就是Bob和Alice了,因为很多安全原理阐述中都用这两个虚拟人物来进行实例说明. 我们来看看Bob是怎么从CA中心获得一个数字证书的: 1.Bob首先创建他自己的密钥对(k ...
- 473 Matchsticks to Square 火柴拼正方形
还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到.输入为小女孩拥有火柴的 ...
- android开发学习——关于activity 和 fragment在toolbar上设置menu菜单
在做一个项目,用的是Android Studio 系统的抽屉源码,但是随着页面的跳转,toolbar的title需要改变,toolbar上的menu菜单也需要改变,在网上找了好久,也尝试了很多,推荐给 ...