Problem Description

给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!

思路:水题,练一下lucas

#include<iostream>
#include<cstdio>
#include <math.h>
#include<algorithm>
#include<string.h>
#include<queue>
#define MOD 1000003
#define maxn 2009
#define LL long long
using namespace std;
LL mpow(LL a,LL n,LL p)
{
        if(n==0)return 1;
        if(n==1)return a%p;
        if(n&1)return (a*mpow(a,n-1,p))%p;
        else
        {
                LL u=mpow(a,n>>1,p)%p;
                return (u*u)%p;
        }
}
LL C(LL n,LL m,LL p)
{
        if(m==0)return 1;
        if(m>n-m)m=n-m;
        LL up=1,down=1;
        for(int i=1;i<=m;i++){
                up=(up*(n-i+1))%p;
                down=(down*i)%p;
        }
        return up*mpow(down,p-2,p)%p;
}
long long lucas(long long n,long long m,long long p)
{
        if(m==0)return 1;
        return C(n%p,m%p,p)*lucas(n/p,m/p,p);
}
int main()
{
        long long m,n,p;
        int t;
        scanf("%d",&t);
        while(t--)
        {
                scanf("%I64d%I64d%I64d",&n,&m,&p);
                printf("%I64d\n",lucas(n,m,p));
        }
        return 0;
}

FZU 2020 :组合 【lucas】的更多相关文章

  1. FZU 2020 组合 (Lucas定理)

    题意:中文题. 析:直接运用Lucas定理即可.但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示. 代码如下: #pragma comment(linker, "/ ...

  2. FZU 2020 组合

    组合数求模要用逆元,用到了扩展的欧几里得算法. #include<cstdio> int mod; typedef long long LL; void gcd(LL a,LL b,LL ...

  3. lucas定理 FOJ 2020 组合

     Problem 2020 组合 Accept: 886    Submit: 2084Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem ...

  4. Problem 2020 组合(FOJ)

    Problem 2020 组合 Accept: 714    Submit: 1724Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem ...

  5. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  6. 【Lucas组合数定理】组合-FZU 2020

    组合 FZU-2020 题目描述 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是x ...

  7. 组合 Lucas定理

    组合 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u [Submit]   [Go Ba ...

  8. 快速求排列组合 lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况. 就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 一般lucas定理的p ...

  9. 排列组合lucas模板

    //codeforces 559C|51nod1486 Gerald and Giant Chess(组合数学+逆元) #include <bits/stdc++.h> using nam ...

随机推荐

  1. 怎样配置JDK开发环境

    (1)我们需要配置三个环境变量,分别是JAVA_HOME,CLASSPATH,Path (2)变量名输入:JAVA_HOME,变量值输入:D:\Java\jdk1.8.0_05点击确定. 需要特别注意 ...

  2. 单调栈2 POJ3250 类似校内选拔I题

    这个题再次证明了单调栈的力量 简单 单调栈 类似上次校内选拔消砖块 一堆牛面朝右排 给出从左到右的 问每个牛的能看到前面牛发型的个数之和 //re原因 因为在执行pop的时候没有判断empty 程序崩 ...

  3. poj1338 Ugly Numbers 打表, 递推

    题意:一个数的质因子能是2, 3, 5, 那么这个数是丑数. 思路: 打表或者递推. 打表: 若该数为丑数,那么一定能被2 或者3, 或者5 整除, 除完之后则为1. #include <ios ...

  4. CPP-基础:内存泄露及其检测工具

    [转]浅谈C/C++内存泄露及其检测工具   对于一个c/c++程序员来说,内存泄漏是一个常见的也是令人头疼的问题.已经有许多技术被研究出来以应对这个问题,比如 Smart Pointer,Garba ...

  5. js parse_url 引发的

    原文链接:https://www.w3.org/TR/2011/WD-html5-20110525/origin-0.html 这里只是做下记录: 5.3 Origin — HTML5 li, dd ...

  6. linux or msys2设置网络代理

    在文件 .bashrc 中添加 export http_proxy="proxy IP:port" 如 export http_proxy="192.168.0.1:80 ...

  7. java在线聊天项目 使用SWT快速制作登录窗口,可视化窗口Design 更换窗口默认皮肤(切换Swing自带的几种皮肤如矩形带圆角)

    SWT成功激活后 new一个JDialog 调整到Design视图 默认的视图模式是BorderLayout,无论你怎么拖拽,只能放到东西南北中的位置上 所以,我们把视图模式调整为AbsoluteLa ...

  8. ios调试小结

    Xcode底部的小黑盒是我们调试时的好朋友,它可以输出日志信息.错误信息以及其他有用的东西来帮你跟踪错误,除了可以看到日志直接输出的信息外,我们编程过程中也可以在某些断点停留,来检查app的多个方面. ...

  9. C++系统学习之七:类

    类的基本思想是数据抽象和封装. 数据抽象是一种依赖于接口和实现分离的编程技术.类的接口包括用户所能执行的操作:类的实现包括类的数据成员.负责接口实现的函数体以及定义类所需的各种私有函数. 封装实现了类 ...

  10. mybatis 批量操作增删改查

    在介绍批量操作之前,首先先介绍一个语法:foreach.可以说是,foreach是整个批量操作的灵魂. 属性 描述 item 循环体中的具体对象. 支持属性的点路径访问,如item.age,item. ...