获得成就:第一次在信竞做神仙数学题

先放个前言,$OI$ 出大型数学题还是比较麻烦的,因为主要是考你数学推导 / 手算式子,你算出来之后把公式套个板子,就得到结论——$OI$ 的大型数学题的代码都是板子……

然后再放一些前置物理知识——功的计算公式:$E(W)=F\times s$($s$ 表示路程)。

首先,我们得知道题目隐含条件,就是人速不能小于等于风速,否则总时间就是无穷大了。

我们可以先给每段路随便分配个速度或时间,我这里分配的是时间。

然后时间又可以先分配为无限小或无限大,我这里分配成无限小,也就是 $1\times 10^{-7}\times \frac{1}{n}$(不能 $\le 0$)。

这样我们就可以算出每段的人速($v_i=\frac{s_i}{t_i}$)。

也可以算出人总共做了多少功。

这时总功可能会超过限制。我们考虑增加人在某一段上骑行所用的时间,这样那一段的速度就会减小,力和功也随之减小。

这看起来很像个贪心。但做过 $dp$ 的人都知道,一步的最优选择不代表全局的最优选择。

如果要证明贪心是对的(即每一步的最优选择都属于全局的最优选择),我们得证明时间的导数在其有效区间中是单调上升的(这个有效区间就是 人速 $\gt$ 风速的部分)。

也就是说重点是把功的式子 $E=s_i\times k_i\times (\frac{s_i}{t_i}-v'_i)$ 求导数。

它的导数是 $$E'=(s_i\times k_i\times [2\times (\frac{s_i}{t_i}-v'_i)]\times (\frac{s_i}{t_i^2})$$

推导过程:

套用导数公式 $$\frac{dE}{dx}=\frac{dE}{dg}\times \frac{dg}{dx}$$

其意义是求 $E$ 以 $x$ 为底的导数,那么在这里 $dx=t_i^{-1}$。

可知如果设 $dg=\frac{s_i}{t_i}-v'_i$,则根据一些乱七八糟的导数公式可得

$$\frac{dE}{dg}=(s_i\times k_i\times [2\times (\frac{s_i}{t_i}-v'_i)]$$

由于 $v'_i$ 是给定的常数,它的导数值为 $0$,则 $$\frac{dg}{dx}=\frac{s_i}{t_i^2}$$

推导完毕。

不难发现这个导数式子是一个关于 $t_i$ 的 $-3$ 次方程,也就是 $t_i^{-1}$ 的 $3$ 次方程。而方程的图像状态只跟最高次数有关,所以它的图像大概就是 $3$ 次函数的样子:

然后我们考虑一下合法之前说过的有效区间在哪里(就是哪一段人速大于风速)。

但是我们发现横坐标好像有点碍事。我们发现总长是不变的,横坐标定义为时间的负 $x$ 次方,就跟定义为人速的正 $x$ 次方的趋势是一致的,也就是说两者画出来都是如上的三次方图像。

如果没明白,可以理解为把横纵坐标同乘上一个常数——$s_i$,然后横坐标就变成人速 $v_i$ 了,而原图像只是在纵方向上伸缩了。这样我们就得到了横坐标为 $v_i$ 的图像。

进一步地,我们还可以把横坐标再减去一个

【NOI2012】骑行川藏的更多相关文章

  1. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  2. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  3. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  4. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  5. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  6. 【BZOJ】2876: [Noi2012]骑行川藏

    题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...

  7. NOI2012 骑行川藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=2876 表示完全不会...... 还是跪拜大神吧 http://www.cnblogs.com/Ger ...

  8. [NOI2012] 骑行川藏 | 求导 二分

    一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就 ...

  9. [NOI2012]骑行川藏(未完成)

    题解: 满分又是拉格朗日啥的 以后再学 自己对于n=2猜了个三分 然后对拍了一下发现是对的

  10. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

随机推荐

  1. IOS自动化测试之UIAutomation

    通过Xcode工具编写运行测试脚本 1.当你有了一个应用的源代码之后,在Xcode工具中,首先选中被测应用,然后点击菜单栏中的“Product-Profile”,则会弹出Instruments工具,在 ...

  2. windows 操作系统种类

    @hcy 敬请访问:http://blog.sina.com.cn/iihcy Microsoft公司从1983年开始研制Windows系统,最初的研制目标是在MS-DOS的基础上提供一个多任务的图形 ...

  3. search bar 自定义背景

    //修改搜索框背景 self.searchCarKeyWord.backgroundColor=[UIColorclearColor]; //去掉搜索框背景 //1. [[self.searchCar ...

  4. spring 中bean学习笔记

    spring 中bean 一.bean的定义和应用 1. bean 形象上类似于getXX()和setXX()的一种. 2. 由于java是面向对象的,类的方法和属性在使用中需要实例化. 3. 规律: ...

  5. MySQL报错竞技赛

    以下报错,我几乎没出过几个. ERROR 2 系统找不到文件: mysql-5.6.1X默认的配置文件是在C:\Program Files\MySQL\MySQL Server 5.6\my-defa ...

  6. Integer比较浅析

    //Integer 型比较假如是使用 == ,只能比较数值为-128~127数值; 在这个范围内使用的是自动装箱拆箱: //.intValue()使用这个需要确认属性不为null; //equals( ...

  7. "Mac OS X"录屏幕视频并转成gif

    第一步: 使用软件QuickTime Player录屏幕视频,创建方式选择新建屏幕录制: 选择区域录制,录好保存后,就需要转gif,需要另外一个软件. 第二步: 使用GIFBrewery软件创建gif ...

  8. HDU-6035 Colorful Tree(树形DP) 2017多校第一场

    题意:给出一棵树,树上的每个节点都有一个颜色,定义一种值为两点之间路径中不同颜色的个数,然后一棵树有n*(n-1)/2条 路径,求所有的路径的值加起来是多少. 思路:比赛的时候感觉是树形DP,但是脑袋 ...

  9. MIPS——递归调用

    嵌套过程 不调用其他过程的过程称为叶过程(leaf procedure).如果所有过程都是叶过程,那么情况就很简单.但是某个过程可以调用其他过程,甚至调用的是自身的“克隆”.在调用非叶过程时使用寄存器 ...

  10. 【单片机实验】6LED静态串行显示

    实验三 6LED静态串行显示一.实验目的1.掌握数字.字符转换成由数码管显示的八段码的软件译码方法及译码过程:2.静态显示的原理和相关程序的编写. 二.实验电路静态显示 电路如图3-2所示.显示器由6 ...