[luoguP1970] 花匠(DP)
n2 过不了惨啊
70分做法
f[i][0] 表示第 i 个作为高的,的最优解
f[i][0] 表示第 i 个作为低的,的最优解
(且第 i 个一定选)
那么
f[i+1][1]=max(f[j][0])+1,i>=j>=1,h[j]>h[i+1],
f[i+1][0]=max(f[j][1])+1,i>=j>=1,h[j]<h[i+1],
——代码
#include <cstdio>
#include <algorithm> const int MAXN = , INF = ~( << );
int n, ans, max;
int a[MAXN], f[MAXN][]; inline int Max(int x, int y)
{
return x > y ? x : y;
} int main()
{
//freopen("flower.in", "r", stdin);
//freopen("flower.out", "w", stdout);
int i, j;
scanf("%d", &n);
for(i = ; i <= n; i++) scanf("%d", &a[i]);
for(i = ; i <= n; i++)
{
max = ;
for(j = ; j < i; j++)
if(a[j] < a[i] && f[j][] > max)
max = f[j][];
f[i][] = max + ;
ans = Max(ans, f[i][]);
max = ;
for(j = ; j < i; j++)
if(a[j] > a[i] && f[j][] > max)
max = f[j][];
f[i][] = max + ;
ans = Max(ans, f[i][]);
}
printf("%d\n", ans);
return ;
}
100分
我们发现上面的方程可以用线段树优化,可以建一颗权值线段树
#include <cstdio>
#include <iostream>
#include <algorithm>
#define root 1, 1, size
#define ls now << 1, l, mid
#define rs now << 1 | 1, mid + 1, r const int MAXN = ;
int n, size;
int a[MAXN], b[MAXN], f[MAXN][], max[MAXN << ][]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline int Max(int x, int y)
{
return x > y ? x : y;
} inline void pushup(int now)
{
max[now][] = Max(max[now][], max[now << ][]);
max[now][] = Max(max[now][], max[now << | ][]);
max[now][] = Max(max[now][], max[now << ][]);
max[now][] = Max(max[now][], max[now << | ][]);
} inline int query(int x, int y, int k, int now, int l, int r)
{
if(x <= l && r <= y) return max[now][k];
int mid = (l + r) >> ;
if(l > y || r < x) return ;
return Max(query(x, y, k, ls), query(x, y, k, rs));
} inline void update(int x, int a, int b, int now, int l, int r)
{
if(l == r)
{
max[now][] = Max(max[now][], a);
max[now][] = Max(max[now][], b);
return;
}
int mid = (l + r) >> ;
if(x <= mid) update(x, a, b, ls);
else update(x, a, b, rs);
pushup(now);
} int main()
{
int i;
n = read();
for(i = ; i <= n; i++) a[i] = b[i] = read();
std::sort(b + , b + n + );
size = std::unique(b + , b + n + ) - (b + );
for(i = ; i <= n; i++) a[i] = std::lower_bound(b + , b + size + , a[i]) - b;
for(i = ; i <= n; i++)
{
f[i][] = query(, a[i] - , , root) + ;
f[i][] = query(a[i] + , size, , root) + ;
update(a[i], f[i][], f[i][], root);
}
printf("%d\n", Max(f[n][], f[n][]));
return ;
}
100分
用个p线段树,树状数组维护前后缀就好。
#include <cstdio>
#include <iostream>
#include <algorithm>
#define root 1, 1, size
#define ls now << 1, l, mid
#define rs now << 1 | 1, mid + 1, r const int MAXN = ;
int n, ans;
int c0[MAXN], c1[MAXN]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline int max(int x, int y)
{
return x > y ? x : y;
} inline int query1(int x)
{
int ret = ;
for(; x <= MAXN; x += x & -x) ret = max(ret, c1[x]);
return ret;
} inline int query0(int x)
{
int ret = ;
for(; x; x -= x & -x) ret = max(ret, c0[x]);
return ret;
} inline void update0(int x, int d)
{
for(; x <= MAXN; x += x & -x) c0[x] = max(c0[x], d);
} inline void update1(int x, int d)
{
for(; x; x -= x & -x) c1[x] = max(c1[x], d);
} int main()
{
int i, x, y, z;
n = read();
for(i = ; i <= n; i++)
{
z = read() + ;
x = query1(z + ) + ;
y = query0(z - ) + ;
update0(z, x);
update1(z, y);
ans = max(ans, max(x, y));
}
printf("%d\n", ans);
return ;
}
100分
f[i][0] 表示第 i 个作为高的,的最优解
f[i][0] 表示第 i 个作为低的,的最优解
(然而第 i 个不一定选)
那么
h[i]>h[i−1]时,
f[i][0]=max{f[i−1][0],f[i−1][1]+1},f[i][1]=f[i−1][1];
h[i]==h[i−1]时,
f[i][0]=f[i−1][0],f[i][1]=f[i−1][1];
h[i]<h[i−1]时,
f[i][0]=f[i−1][0],f[i][1]=max{f[i−1][1],f[i−1][0]+1}.
答案ans=max{f[n][0],f[n][1]};
边界为f[1][0]=f[1][1]=1
——代码
#include <cstdio>
#include <algorithm> const int MAXN = , INF = ~( << );
int n, ans;
int a[MAXN], f[MAXN][]; inline int max(int x, int y)
{
return x > y ? x : y;
} int main()
{
//freopen("flower.in", "r", stdin);
//freopen("flower.out", "w", stdout);
int i, j;
scanf("%d", &n);
for(i = ; i <= n; i++) scanf("%d", &a[i]);
f[][] = f[][] = ;
for(i = ; i <= n; i++)
{
if(a[i] > a[i - ])
{
f[i][] = max(f[i - ][], f[i - ][] + );
f[i][] = f[i - ][];
}
else if(a[i] == a[i - ])
{
f[i][] = f[i - ][];
f[i][] = f[i - ][];
}
else
{
f[i][] = f[i - ][];
f[i][] = max(f[i - ][], f[i - ][] + );
}
}
printf("%d\n", max(f[n][], f[n][]));
return ;
}
[luoguP1970] 花匠(DP)的更多相关文章
- 洛谷 P1970 花匠 —— DP
题目:https://www.luogu.org/problemnew/show/P1970 普通的DP,f[i][0/1] 表示 i 处处于较小或较大的长度: 注意:1.树状数组向后 query 时 ...
- $Noip2013/Luogu1970$ 花匠 $dp$+思维
$Luogu$ $Sol$ 和$Poj1037\ A\ Decorative\ Fence$好像吖. $f[i][0/1]$表示前$i$个数,且选了第$i$个数,这个数相对于上一个数是下降(上升)的, ...
- NOIP2013 花匠 DP 线段树优化
网上一堆题解,我写的是N^2优化的那种,nlogn,O(n)的那种能看懂,但是让我自己在赛场写,肯定没戏了 #include <cstdio> #include <iostream& ...
- luogu1970 花匠(dp)
设f1[i]表示以1..i中某个合法序列的长度,而且最后一位是较大的 f2[i]表示以1..i中某个合法序列的长度,而且最后一位是较小的 那么就有$f1[i]=max\{f2[j]+1\},(j< ...
- 洛谷P1970 花匠(dp)
题意 题目链接 Sol 直接用\(f[i][0/1]\)表示到第\(i\)个位置,该位置是以上升结尾还是以下降结尾 转移的时候只需枚举前一个即可 #include<cstdio> #inc ...
- NOIP2013 提高组合集
NOIP 2013 提高组 合集 D1 T1 转圈游戏 快速幂裸题 #include <iostream> #include <cstdio> #include <cst ...
- $NOIp$提高组历年题目复习
写在前面 一个简略的\(NOIp\)题高组历年题目复习记录.大部分都有单独写题解,但懒得放\(link\)了\(QwQ\).对于想的时候兜了圈子的题打上\(*\). \(NOIp2018\ [4/6] ...
- DP练习题——洛谷P1970花匠
目录 题目描述: 输入输出格式: 输入格式: 输出格式: 输入输出样例: 输入样例: 输出样例: 题目分析: 解法一: 解法二: 结语: 题目描述: 洛谷\(P1970\) 花匠栋栋种了一排花,每株花 ...
- [DP][NOIP2013]花匠
花匠 问题描述: 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致. ...
随机推荐
- 灰度世界算法(Gray World Algorithm) 分类: 图像处理 Matlab 2014-12-07 18:40 874人阅读 评论(0) 收藏
人的视觉系统具有颜色恒常性,能从变化的光照环境和成像条件下获取物体表面颜色的不变特性,但成像设备不具有这样的调节功能, 不同的光照环境会导致采集的图像颜色与真实颜色存在一定程度的偏差,需要选择合适的颜 ...
- 员工管理系统(集合与IO流的结合使用 beta3.0 BufferedReader / ObjectOutputStream)
Employee.java package cn.employee_io; public class Employee { private String empId; private String n ...
- Java基础教程(24)--集合
一.Java集合框架 集合,有时也称为容器,是一个用来存储和管理多个元素的对象.Java中的集合框架定义了一套规范,用来表示和操作集合,使具体操作与实现细节解耦.集合框架都包含下列内容: 接口:这 ...
- [BZOJ2190][SDOI2008]仪仗队 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌 ...
- javascript中闭包与作用域的理解
很多js的框架与插件编写都用到了闭包,所以,阅读和掌握闭包很有必要.最近学习vue框架时,经常会猜想很多功能的native js实现,很多都应用到了闭包,闭包除了目前已知的一些特性,如:可以保持局部变 ...
- 行内元素对齐各种问题--从line-height和vertical-align的角度分析
最近研究行内元素的对齐问题,发现img不管怎么设置,下边都有一块留白,强迫症无法忍受未知,于是开始了查阅探索之旅. 辗转来到张鑫旭的博客,他对行内盒子模型做了详细的介绍,包括“幽灵节点”,“line- ...
- PAT甲级考前整理(2019年3月备考)之三,持续更新中.....
PAT甲级考前整理一:https://www.cnblogs.com/jlyg/p/7525244.html,主要讲了131题的易错题及坑点 PAT甲级考前整理二:https://www.cnblog ...
- vscode前端开发软件配搭好用的插件
使用方法,可以在官网中搜索需要的插件或者在VsCode的“”扩展“”中搜索需要的插件添加方法使用Ctrl+P, 输入 ext install xxxx ,搜索要安装的插件,点击安装按钮即可(各取所需插 ...
- node.js入门之三
Node.js REPL(交互式解释器) Node.js REPL(Read Eval Print Loop:交互式解释器) 表示一个电脑的环境,类似 Window 系统的终端或 Unix/Linux ...
- CSS中的趣事之float浮动
浮动float一般跟left或是right: 特性: 1,包裹性:浮动文本类型时,需要指定宽度width,如果不指定,就会折叠到最小宽度: 2,浮动会影响别的元素: 3,子级浮动,会导致父级高度 ...