P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools
P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools
题目描述
一些学校连入一个电脑网络。那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”)。注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中。
你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A)。更进一步,我们想要确定通过给任意一个学校发送新软件,这个软件就会分发到网络中的所有学校。为了完成这个任务,我们可能必须扩展接收学校列表,使其加入新成员。计算最少需要增加几个扩展,使得不论我们给哪个学校发送新软件,它都会到达其余所有的学校(子任务 B)。一个扩展就是在一个学校的接收学校列表中引入一个新成员。
输入输出格式
输入格式:
输入文件的第一行包括一个整数 N:网络中的学校数目(2 <= N <= 100)。学校用前 N 个正整数标识。
接下来 N 行中每行都表示一个接收学校列表(分发列表)。第 i+1 行包括学校 i 的接收学校的标识符。每个列表用 0 结束。空列表只用一个 0 表示。
输出格式:
你的程序应该在输出文件中输出两行。
第一行应该包括一个正整数:子任务 A 的解。
第二行应该包括子任务 B 的解。
输入输出样例
说明
题目翻译来自NOCOW。
USACO Training Section 5.3
解题报告:
题目大意:给定一个有向图,求1.至少要选几个点,可以到达全部的点,2.至少要连几条边,使得整个图是强联通的(即从任意一个顶点出发,可以到达任意一个顶点)
有用的定理:有向无环图中所有入度不为0的点,一定可以由某个入度为0的点出发可达。 (由于无环,所以从任何入度不为0的点往回走,必然终止于一个入度为0的点)
思路:tarjan缩点,求出入度为0的点的个数,即为1的答案;
在DAG上要加几条边,才能使得DAG变成强连通的,问题2的答案就是多少,
加边的方法:要为每个入度为0的点添加入边,为每个出度为0的点添加出边
假定有 n 个入度为0的点,m个出度为0的点, max(m,n)就是第二个问题的解(证明难,略)
#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
#define N 2000000
using namespace std; void in(int &x){
register char c=getchar();x=;int f=;
while(!isdigit(c)){if(c=='-') f=-;c=getchar();}
while(isdigit(c)){x=x*+c-'';c=getchar();}
x*=f;
} int ans1,ans2,n,tot,head[N];
struct node{
int to,next;
}e[N]; int dfn[N],low[N],cnt,item,belong[N],rd[N],cd[N];
stack<int>S;
bool vis[N];
void tarjan(int u){
dfn[u]=low[u]=++item;
vis[u]=;S.push(u);
for(int i=head[u];i;i=e[i].next){
int v=e[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v]) low[u]=min(low[u],dfn[v]);
}if(low[u]==dfn[u]){
int v=u;++cnt;
do{
v=S.top();S.pop();
vis[v]=;belong[v]=cnt;
}while(v!=u);
}
} void add(int u,int v){
e[++tot].to=v,e[tot].next=head[u],head[u]=tot;
} int main()
{
in(n);
for(int x,i=;i<=n;i++){
while(){
in(x);
if(!x) break;
add(i,x);
}
}for(int i=;i<=n;i++)
if(!dfn[i]) tarjan(i);
for(int i=;i<=n;i++){
for(int j=head[i];j;j=e[j].next){
int v=e[j].to;
if(belong[i]!=belong[v]){
rd[belong[v]]++;
cd[belong[i]]++;
}
}
}for(int i=;i<=cnt;i++){
if(!rd[i]) ++ans1;
if(!cd[i]) ++ans2;
}ans2=max(ans1,ans2);
if(cnt==) ans2=;
printf("%d\n%d",ans1,ans2);
return ;
}
洛谷P2812是这题的加强版,可以顺便A掉
P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools的更多相关文章
- 洛谷 P2746 [USACO5.3]校园网Network of Schools 解题报告
P2746 [USACO5.3]校园网Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作"接受学校&q ...
- P2746 [USACO5.3]校园网Network of Schools(Tarjan)
P2746 [USACO5.3]校园网Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 ...
- 洛谷 P2746 [USACO5.3]校园网Network of Schools (Tarjan,SCC缩点,DAG性质)
P2746 [USACO5.3]校园网Network of Schools https://www.luogu.org/problem/P2746 题目描述 一些学校连入一个电脑网络.那些学校已订立了 ...
- 洛谷P2746 [USACO5.3]校园网Network of Schools
题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写 ...
- 【luogu P2746 [USACO5.3]校园网Network of Schools】 题解
题目链接:https://www.luogu.org/problemnew/show/P2812 注意:判断出入度是否为0的时候枚举只需到颜色的数量. 坑点:当只有一个强连通分量时,不需要再添加新边. ...
- P2746 [USACO5.3]校园网Network of Schools
传送门 把所有学校的关系构成一个图,显然一个强联通分量的所有学校只要有一个有新软件,其他学校也都会有 考虑缩点,发现入度为 0 的块一定要给,因为没有其他人给它 入度不为 0 的块一定有其他人给,我们 ...
- luogu P2746 [USACO5.3]校园网Network of Schools
题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”).注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中. 你要写 ...
- P2746 [USACO5.3]校园网Network of Schools tarjan 缩点
题意 给出一个有向图,A任务:求最少需要从几个点送入信息,使得信息可以通过有向图走遍每一个点B任务:求最少需要加入几条边,使得有向图是一个强联通分量 思路 任务A,比较好想,可以通过tarjan缩点, ...
- 洛谷 P2746 [USACO5.3]校园网 Network of Schools 题解
Tarjan 模板题 第一问就是缩点之后看有多少个入度为零的点就好了. 第二问是在缩点后将每个点的入度和出度都求出(只要有入度或出度就置为1),然后比较哪个有值的多,将多的作为答案输出.原因是由题可得 ...
随机推荐
- vijos - P1302连续自然数和 (公式推导 + python)
P1302连续自然数和 Accepted 标签:[显示标签] 描写叙述 对一个给定的自然数M,求出所有的连续的自然数段(连续个数大于1).这些连续的自然数段中的所有数之和为M. 样例:1998+199 ...
- UITextView获取光标位置
UITextRange *range = textView.selectedTextRange; //光标位置 CGRect rect = [textView caretRectForPositio ...
- Android开发常用框架汇总
作为一名程序猿,好的工具会让你在搬运工的道路上越走越远.以下框架是AC在开发过程中经常会使用到的一些好的框架.列在这里做一个小小的总结,包含但不限于此. 响应式编程 RxJava https://gi ...
- 读取Excel文件到DataTable中
private static string[] GetExcelSheetNames(OleDbConnection conn) { DataTable dtbSh ...
- Xcode 设置图片全屏显示
- (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...
- go语言笔记——切片底层本质是共享数组内存!!!绝对不要用指针指向 slice切片本身已经是一个引用类型就是指针
切片 切片(slice)是对数组一个连续片段的引用(该数组我们称之为相关数组,通常是匿名的),所以切片是一个引用类型(因此更类似于 C/C++ 中的数组类型,或者 Python 中的 list 类型) ...
- [模板] manacher(教程)
还是不会马拉车啊.今天又学了一遍,在这里讲一下. 其实就是一个很妙的思路,就是设置一个辅助的数组len,记录每个点的最大对称长度,然后再存一个mx记录最大的对称子串的右端点.先开二倍数组,然后一点点扩 ...
- 8.22 NOIP 模拟题
8.22 NOIP 模拟题 编译命令 g++ -o * *.cpp gcc -o * *.c fpc *.pas 编译器版本 g++/gcc fpc 评测环境 位 Linux, .3GHZ CPU ...
- Java经典算法之插入排序(Insert Sort)
插入排序在局部有序的情况下比冒泡排序快一倍,比选择排序快一点. 那什么是插入排序,就是将局部有序的数据向右移动,将未排序的数据插到他的前面 下面我们来解析代码: 这里外层循环out变量从1开始向右移动 ...
- Ajax实现文件的上传
Ajax实现文件的上传 准备 ajax的参数补充 type不写的话默认是GET dataType和ContentType: dataType: 浏览器发给服务器希望返回的数据类型 .. 如果明确地指定 ...