link

题意&题解

code:

 #include<bits/stdc++.h>
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define ll long long
#define inf 1000000001
#define y1 y1___
using namespace std;
char gc(){
static char buf[],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
#define gc getchar
ll read(){
char ch=gc();ll x=;int op=;
for (;!isdigit(ch);ch=gc()) if (ch=='-') op=-;
for (;isdigit(ch);ch=gc()) x=(x<<)+(x<<)+ch-'';
return x*op;
}
#define N 205
#define M 10205+N<<1
int n,m,cnt=,s,t,head[N],d[N],vis[N],cur[N];
struct edge{int to,nxt,d,c;}e[M];
void adde(int x,int y,int d,int c){
e[++cnt].to=y;e[cnt].nxt=head[x];head[x]=cnt;
e[cnt].d=d;e[cnt].c=c;//d:原图下界;c:新图容量
}
void ins(int x,int y,int d,int z){
adde(x,y,d,z);adde(y,x,d,);
}
bool bfs(){
queue<int> q;q.push(s);
rep (i,,t) vis[i]=-;vis[s]=;
while (!q.empty()){
int u=q.front();q.pop();
for (int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if (e[i].c&&vis[v]==-) vis[v]=vis[u]+,q.push(v);
}
}
return vis[t]!=-;
}
int dfs(int u,int flow){
if (u==t) return flow;
int w,used=;
for (int &i=cur[u];i;i=e[i].nxt){
int v=e[i].to;
if (e[i].c&&vis[v]==vis[u]+){
w=dfs(v,min(flow-used,e[i].c));
e[i].c-=w,e[i^].c+=w,used+=w;
if (used==flow) return used;
}
}
if (!used) vis[u]=-;
return used;
}
int dinic(){
int ret=;
while (bfs()){
memcpy(cur,head,sizeof(cur));//当前弧优化
ret+=dfs(s,inf);
}
return ret;
}
int main(){
n=read(),m=read();
rep (i,,m){
int x=read(),y=read(),a=read(),b=read();
ins(x,y,a,b-a);d[x]-=a,d[y]+=a;
}
s=n+,t=n+;
rep (i,,n) if (d[i]>) ins(s,i,,d[i]);else ins(i,t,,-d[i]);
dinic();
for (int i=head[s];i;i=e[i].nxt) if (vis[e[i].to]!=-){puts("NO");exit();}
puts("YES");
rep (i,,m) printf("%d\n",e[i*+].d+e[i*+].c);
return ;
}

loj115 无源汇有上下界可行流的更多相关文章

  1. LOJ115 无源汇有上下界可行流(上下界网络流)

    假设初始流为每条边的下界.但这样可能流量会不守恒,我们需要在上面加上一个附加流使流量守恒.只要让每个点开始的出/入流量与原初始流相等就可以求出附加流了.那么新建超源S超汇T,令degree[i]表示流 ...

  2. 【LOJ115】无源汇有上下界可行流(模板题)

    点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...

  3. LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)

    #115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...

  4. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  5. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  6. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  7. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  8. LibreOJ #115. 无源汇有上下界可行流

    二次联通门 : LibreOJ #115. 无源汇有上下界可行流 /* LibreOJ #115. 无源汇有上下界可行流 板子题 我也就会写写板子题了.. */ #include <cstdio ...

  9. 无源汇有上下界可行流(ZQU 1590)

    无源汇有上下界可行流(也就是循环流) 模型:一个网络,求出一个流,使得每条边的流量必须>=Li且<=Hi, 每个点必须满足总流入量=总流出量(流量守恒)(这个流的特点是循环往复,无始无终) ...

随机推荐

  1. How to read source code[repost]

    https://github.com/benjycui/benjycui.github.io/blob/master/posts/how-to-read-open-source-javascript- ...

  2. 安装Docker-ce

    Docker Engine改为Docker CE(社区版) 它包含了CLI客户端.后台进程/服务以及API.用户像以前以同样的方式获取.Docker Data Center改为Docker EE(企业 ...

  3. JSON.parse()——json字符串转JS

    JSON 通常用于与服务端交换数据. 在接收服务器数据时一般是字符串. 我们可以使用 JSON.parse() 方法将数据转换为 JavaScript 对象. 语法 JSON.parse(text[, ...

  4. 64_p9

    python2-termcolor-1.1.0-11.fc26.noarch.rpm 12-Feb-2017 14:05 13610 python2-terminado-0.6-2.fc26.noar ...

  5. 函数参数 f_arg, *args, **kwargs

    当需要给函数传参时,可以通过运用不同的形参来传递,达到参数不同的使用目的. 简单来说:f_arg就是传递的第一个参数,类似于C++中的普通参数: *args 传递的是一个参数的list: **kwar ...

  6. jquery ajax的再次封装,简化操作

    1.封装的ajax var funUrl=""   // 每个请求地址相同的部分 function queryData(url,params,success,error){ url ...

  7. Maven整合Spring与Solr

    首先,在maven的pom.xml文件中配置对spring和solrj客户端的依赖: <project xmlns="http://maven.apache.org/POM/4.0.0 ...

  8. PlantUML——3.Graphviz的安装

    官网:http://www.graphviz.org/Home.php   由于plantuml使用Graphviz来生成相关图形(只有序列图可以不依赖它),其它图形都需要, 因此得安装它,否则生成图 ...

  9. Suse Linux下NTP缓慢调整配置,转载至http://www.gpstime.com.cn/

    (1)系统内若有使用crontab 进行与时间调整相关的例行性工作排程,应注释掉(命令人工crontab -e修改,删除定时同步任务ntpdate -s ntpserver). (2)修改ntp配置文 ...

  10. mac下docker中安装nodejs

    一.首先下载docker并安装 https://download.docker.com/mac/stable/Docker.dmg 然后启动docker, 二.获取node最新镜像 输入来着node版 ...