原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)

本期内容:

一、Spark Streaming 数据清理总览

二、Spark Streaming 数据清理过程详解

三、Spark Streaming 数据清理的触发机制


Spark Streaming不像普通Spark 的应用程序,普通Spark程序运行完成后,中间数据会随着SparkContext的关闭而被销毁,而Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的中间数据,所以需要对对象及元数据需要定期清理。每个batch duration运行时不断触发job后需要清理rdd和元数据。下面我们就结合源码详细解析一下Spark Streaming程序的数据清理机制。

一、数据清理总览

Spark Streaming 运行过程中,随着时间不断产生Job,当job运行结束后,需要清理相应的数据(RDD,元数据信息,Checkpoint数据),Job由JobGenerator定时产生,数据的清理也是有JobGenerator负责。

JobGenerator负责数据清理控制的代码位于一个消息循环体eventLoop中:

  1. eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
  2. override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)
  3. override protected def onError(e: Throwable): Unit = {
  4. jobScheduler.reportError("Error in job generator", e)
  5. }
  6. }
  7. eventLoop.start()

其中的核心逻辑位于processEvent(event)函数中:

  1. /** Processes all events */
  2. private def processEvent(event: JobGeneratorEvent) {
  3. logDebug("Got event " + event)
  4. event match {
  5. case GenerateJobs(time) => generateJobs(time)
  6. case ClearMetadata(time) => clearMetadata(time)
  7. case DoCheckpoint(time, clearCheckpointDataLater) =>
  8. doCheckpoint(time, clearCheckpointDataLater)
  9. case ClearCheckpointData(time) => clearCheckpointData(time)
  10. }
  11. }

可以看到当JobGenerator收到ClearMetadata(time) 和 ClearCheckpointData(time)是会进行相应的数据清理,其中 clearMetadata(time)会清理RDD数据和一些元数据信息, ClearCheckpointData(time)会清理Checkpoint数据。

二、数据清理过程详解
    2.1 ClearMetaData 过程详解
首先看一下clearMetaData函数的处理逻辑:
  1. /** Clear DStream metadata for the given `time`. */
  2. private def clearMetadata(time: Time) {
  3. ssc.graph.clearMetadata(time)
  4. // If checkpointing is enabled, then checkpoint,
  5. // else mark batch to be fully processed
  6. if (shouldCheckpoint) {
  7. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
  8. } else {
  9. // If checkpointing is not enabled, then delete metadata information about
  10. // received blocks (block data not saved in any case). Otherwise, wait for
  11. // checkpointing of this batch to complete.
  12. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
  13. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
  14. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
  15. markBatchFullyProcessed(time)
  16. }
  17. }

首先调用了DStreamGraph的clearMetadata方法:

  1. def clearMetadata(time: Time) {
  2. logDebug("Clearing metadata for time " + time)
  3. this.synchronized {
  4. outputStreams.foreach(_.clearMetadata(time))
  5. }
  6. logDebug("Cleared old metadata for time " + time)
  7. }

这里调用了所有OutputDStream (关于DStream 的分类请参考http://blog.csdn.net/zhouzx2010/article/details/51460790)的clearMetadata方法

  1. private[streaming] def clearMetadata(time: Time) {
  2. val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true)
  3. //获取需要清理的RDD
  4. val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
  5. logDebug("Clearing references to old RDDs: [" +
  6. oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")

  7. //将要清除的RDD从generatedRDDs 中清除
  8. generatedRDDs --= oldRDDs.keys
  9. if (unpersistData) {
  10. logDebug(s"Unpersisting old RDDs: ${oldRDDs.values.map(_.id).mkString(", ")}")
  11. oldRDDs.values.foreach { rdd =>
  12.     //将RDD 从persistence列表中移除
  13. rdd.unpersist(false)
  14. // Explicitly remove blocks of BlockRDD
  15. rdd match {
  16. case b: BlockRDD[_] =>
  17. logInfo(s"Removing blocks of RDD $b of time $time")
  18. //移除RDD的block 数据
  19. b.removeBlocks()
  20. case _ =>
  21. }
  22. }
  23. }
  24. logDebug(s"Cleared ${oldRDDs.size} RDDs that were older than " +
  25. s"${time - rememberDuration}: ${oldRDDs.keys.mkString(", ")}")
  26. //清除依赖的DStream
  27. dependencies.foreach(_.clearMetadata(time))
  28. }

关键的清理逻辑在代码中做了详细注释,首先清理DStream对应的RDD的元数据信息,然后清理RDD的数据,最后对DStream所依赖的DStream进行清理。

回到JobGenerator的clearMetadata函数:

  1. if (shouldCheckpoint) {
  2. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
  3. } else {
  4. // If checkpointing is not enabled, then delete metadata information about
  5. // received blocks (block data not saved in any case). Otherwise, wait for
  6. // checkpointing of this batch to complete.
  7. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
  8. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
  9. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
  10. markBatchFullyProcessed(time)
  11. }

调用了ReceiverTracker的 cleanupOldBlocksAndBatches方法,最后调用了clearupOldBatches方法:

  1. def cleanupOldBatches(cleanupThreshTime: Time, waitForCompletion: Boolean): Unit = synchronized {
  2. require(cleanupThreshTime.milliseconds < clock.getTimeMillis())
  3. val timesToCleanup = timeToAllocatedBlocks.keys.filter { _ < cleanupThreshTime }.toSeq
  4. logInfo(s"Deleting batches: ${timesToCleanup.mkString(" ")}")
  5. if (writeToLog(BatchCleanupEvent(timesToCleanup))) {
  6. //将要删除的Batch数据清除
  7. timeToAllocatedBlocks --= timesToCleanup
  8. //清理WAL日志
  9. writeAheadLogOption.foreach(_.clean(cleanupThreshTime.milliseconds, waitForCompletion))
  10. } else {
  11. logWarning("Failed to acknowledge batch clean up in the Write Ahead Log.")
  12. }
  13. }

可以看到ReceiverTracker的clearupOldBatches方法清理了Receiver数据,也就是Batch数据和WAL日志数据。
最后对InputInfoTracker信息进行清理:
  1. def cleanup(batchThreshTime: Time): Unit = synchronized {
  2. val timesToCleanup = batchTimeToInputInfos.keys.filter(_ < batchThreshTime)
  3. logInfo(s"remove old batch metadata: ${timesToCleanup.mkString(" ")}")
  4. batchTimeToInputInfos --= timesToCleanup
  5. }
这简单的清除了batchTimeToInputInfos 的输入信息。

2.2 ClearCheckPoint 过程详解
看一下clearCheckpointData的处理逻辑:
  1. /** Clear DStream checkpoint data for the given `time`. */
  2. private def clearCheckpointData(time: Time) {
  3. ssc.graph.clearCheckpointData(time)
  4. // All the checkpoint information about which batches have been processed, etc have
  5. // been saved to checkpoints, so its safe to delete block metadata and data WAL files
  6. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
  7. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
  8. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
  9. markBatchFullyProcessed(time)
  10. }

后面的ReceiverTraker和InputInforTracker的清理逻辑和ClearMetaData的相同,这分析DStreamGraph的clearCheckpointData方法:

  1. def clearCheckpointData(time: Time) {
  2. logInfo("Clearing checkpoint data for time " + time)
  3. this.synchronized {
  4. outputStreams.foreach(_.clearCheckpointData(time))
  5. }
  6. logInfo("Cleared checkpoint data for time " + time)
  7. }

同样的调用了DStreamGraph中所有OutputDStream的clearCheckPiontData 方法:

  1. private[streaming] def clearCheckpointData(time: Time) {
  2. logDebug("Clearing checkpoint data")
  3. checkpointData.cleanup(time)
  4. dependencies.foreach(_.clearCheckpointData(time))
  5. logDebug("Cleared checkpoint data")
  6. }

这里的核心逻辑在checkpointData.cleanup(time)方法,这里的CheckpointData 是 DStreamCheckpointData对象, DStreamCheckpointData的clearup方法如下:
  1. def cleanup(time: Time) {
  2. // 获取需要清理的Checkpoint 文件 时间
  3. timeToOldestCheckpointFileTime.remove(time) match {
  4. case Some(lastCheckpointFileTime) =>
  5. //获取需要删除的文件
  6. val filesToDelete = timeToCheckpointFile.filter(_._1 < lastCheckpointFileTime)
  7. logDebug("Files to delete:\n" + filesToDelete.mkString(","))
  8. filesToDelete.foreach {
  9. case (time, file) =>
  10. try {
  11. val path = new Path(file)
  12. if (fileSystem == null) {
  13. fileSystem = path.getFileSystem(dstream.ssc.sparkContext.hadoopConfiguration)
  14. }
  15. //  删除文件   
  16. fileSystem.delete(path, true)
  17. timeToCheckpointFile -= time
  18. logInfo("Deleted checkpoint file '" + file + "' for time " + time)
  19. } catch {
  20. case e: Exception =>
  21. logWarning("Error deleting old checkpoint file '" + file + "' for time " + time, e)
  22. fileSystem = null
  23. }
  24. }
  25. case None =>
  26. logDebug("Nothing to delete")
  27. }
  28. }

可以看到checkpoint的清理,就是删除了指定时间以前的checkpoint文件。

三、数据清理的触发
    3.1 ClearMetaData 过程的触发
JobGenerator 生成job后,交给JobHandler执行, JobHandler的run方法中,会在job执行完后给JobScheduler 发送JobCompleted消息:
  1. _eventLoop = eventLoop
  2. if (_eventLoop != null) {
  3. _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
  4. }
JobScheduler 收到JobCompleted 消息调用 handleJobCompletion 方法,源码如下:

  1. private def processEvent(event: JobSchedulerEvent) {
  2. try {
  3. event match {
  4. case JobStarted(job, startTime) => handleJobStart(job, startTime)
  5. case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
  6. case ErrorReported(m, e) => handleError(m, e)
  7. }
  8. } catch {
  9. case e: Throwable =>
  10. reportError("Error in job scheduler", e)
  11. }
  12. }

在 JobScheduler 的handleJobCompletion方法中会调用JobGenerator的onBatchCompletion方法,我们看一下JobGenerator的 onBatchCompletion 方法的源码:

  1. def onBatchCompletion(time: Time) {
  2. eventLoop.post(ClearMetadata(time))
  3. }

可以看到JobGenerator的onBatchCompletion方法给自己发送了ClearMetadata消息从而触发了ClearMetaData操作。

3.2 ClearCheckPoint 过程的触发
    清理CheckPoint数据发生在CheckPoint完成之后,我们先看一下CheckPointHandler的run方法:

  1. // All done, print success
  2. val finishTime = System.currentTimeMillis()
  3. logInfo("Checkpoint for time " + checkpointTime + " saved to file '" + checkpointFile +
  4. "', took " + bytes.length + " bytes and " + (finishTime - startTime) + " ms")
  5. //调用JobGenerator的方法进行checkpoint数据清理
  6. jobGenerator.onCheckpointCompletion(checkpointTime, clearCheckpointDataLater)
  7. return

可以看到在checkpoint完成后,会调用JobGenerator的onCheckpointCompletion方法进行checkpoint数据清理,我查看JobGenerator的onCheckpointCompletion方法源码:

  1. def onCheckpointCompletion(time: Time, clearCheckpointDataLater: Boolean) {
  2. if (clearCheckpointDataLater) {
  3. eventLoop.post(ClearCheckpointData(time))
  4. }
  5. }

可以看到JobGenerator的onCheckpointCompletion方法中首先对传进来的 clearCheckpointDataLater 参数进行判断,如果该参数为true,就会给JobGenerator的eventLoop循环体发送ClearCheckpointData消息,从而触发clearCheckpointData 方法的调用,进行Checkpoint数据的清理。
什么时候该参数会true呢?
我们回到JobGenerator的 ClearMetadata 方法:

  1. private def clearMetadata(time: Time) {
  2. ssc.graph.clearMetadata(time)
  3. if (shouldCheckpoint) {
  4. //发送DoCheckpoint消息,并进行相应的Checkpoint数据清理
  5. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
  6. } else {
  7. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
  8. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
  9. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
  10. markBatchFullyProcessed(time)
  11. }
  12. }

可以看到在clearMetadata方法中,发送了DoCheckpoint消息,其中参数 clearCheckpointDataLater 为ture。Generator的eventLoop收到该消息后调用 doCheckpoint 方法:

  1. private def doCheckpoint(time: Time, clearCheckpointDataLater: Boolean) {
  2. if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) {
  3. logInfo("Checkpointing graph for time " + time)
  4. ssc.graph.updateCheckpointData(time)
  5. checkpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater)
  6. }
  7. }

这里关键一步:调用了CheckpointWriter的write方法,注意此时参数 clearCheckpointDataLater 为true。我们进入该方法:

  1. def write(checkpoint: Checkpoint, clearCheckpointDataLater: Boolean) {
  2. try {
  3. val bytes = Checkpoint.serialize(checkpoint, conf)
  4. //将参数clearCheckpointDataLater传入CheckpoitWriteHandler
  5. executor.execute(new CheckpointWriteHandler(
  6. checkpoint.checkpointTime, bytes, clearCheckpointDataLater))
  7. logInfo("Submitted checkpoint of time " + checkpoint.checkpointTime + " writer queue")
  8. } catch {
  9. case rej: RejectedExecutionException =>
  10. logError("Could not submit checkpoint task to the thread pool executor", rej)
  11. }
  12. }

可以看到此时参数 clearCheckpointDataLater 传入CheckpointWriteHandler 。这样Checkpoint完成之后就会发送ClearCheckpointData消息给JobGenerator进行Checkpoint数据的清理。

原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)







16.Spark Streaming源码解读之数据清理机制解析的更多相关文章

  1. Spark Streaming源码解读之数据清理内幕彻底解密

    本期内容 : Spark Streaming数据清理原理和现象 Spark Streaming数据清理代码解析 Spark Streaming一直在运行的,在计算的过程中会不断的产生RDD ,如每秒钟 ...

  2. Spark Streaming源码解读之JobScheduler内幕实现和深度思考

    本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环, ...

  3. Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考

    本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Drive ...

  4. 15、Spark Streaming源码解读之No Receivers彻底思考

    在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Appr ...

  5. 第12课:Spark Streaming源码解读之Executor容错安全性

    一.Spark Streaming 数据安全性的考虑: Spark Streaming不断的接收数据,并且不断的产生Job,不断的提交Job给集群运行.所以这就涉及到一个非常重要的问题数据安全性. S ...

  6. Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

    本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Rece ...

  7. Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考

    本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Tea ...

  8. Spark Streaming源码解读之Job动态生成和深度思考

    本期内容 : Spark Streaming Job生成深度思考 Spark Streaming Job生成源码解析 Spark Core中的Job就是一个运行的作业,就是具体做的某一件事,这里的JO ...

  9. 11.Spark Streaming源码解读之Driver中的ReceiverTracker架构设计以及具体实现彻底研究

    上篇文章详细解析了Receiver不断接收数据的过程,在Receiver接收数据的过程中会将数据的元信息发送给ReceiverTracker:   本文将详细解析ReceiverTracker的的架构 ...

随机推荐

  1. 类的起源与metaclass

    一.概述 我们知道类可以实例化出对象,那么类本身又是怎么产生的呢?我们就来追溯一下类的起源. 二.类的起源 2.1 创建一个类 class Foo(object): def __init__(self ...

  2. TestNG指南

    转载自:http://blog.csdn.net/bigapplestar/article/details/7300137 今天突然收到通知,统一改用TestNG写测试用例,开始查这方面的资料,学习一 ...

  3. OpenCV---超大图像二值化和空白区域过滤

    超大图像的二值化方法 1.可以采用分块方法, 2.先缩放处理就行二值化,然后还原大小 一:分块处理超大图像的二值化问题 def big_image_binary(image): print(image ...

  4. linux下配置java环境及问题

    一:下载jdk 下载稳定版本http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk7-downloads-1880260.html ...

  5. CodeBlocks调试器设置错误问题

    错误如下: Building to ensure sources are up-to-date Selecting target:  Debug ERROR: You need to specify ...

  6. 如何构建一个很棒网站页脚(Website Footer)

    对于很多人来说,制作页脚是只是设计师顺手而为的任务.它似乎很容易,似乎可以忽略不计.因为很多人都觉得网站底部很少人会去看,而且页脚链接的所有链接的点击率(CTR)都是最低的,何必呢? 真是这样的吗?下 ...

  7. 使用CSS3创建文字颜色渐变(CSS3 Text Gradient)

    考虑一下,如何在网页中达到类似以下文字渐变的效果? 传统的实现中,是用一副透明渐变的图片覆盖在文字上.具体实现方式可参考 http://www.qianduan.net/css-gradient-te ...

  8. 【leetcode 简单】第二题 反转整数

    给定一个 32 位有符号整数,将整数中的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出: 21 注意: 假 ...

  9. Redis数据类型之字符串(string)

    1. string类型简介 string类型是二进制安全的,能够存储任意类型的字符串. string类型是最常用到的数据类型,一种常用的用法就是将对象格式化为JSON字符串然后放到redis中,取出来 ...

  10. Tensorflow常用函数说明(一)

    首先最开始应该清楚一个知识,最外面的那个[ [ [ ]]]括号代表第一维,对应维度数字0,第二个对应1,多维时最后一个对应数字-1:因为后面有用到 1 矩阵变换 tf.shape(Tensor) 返回 ...