codeJan喜欢观察世界。有一天,codeJan发现一个非常奇怪的现象。有一些年轻的青蛙聚集在一条直线上的某些位置上,同一个位置可能有多个青蛙。这些青蛙每次只会向前跳一米,并且每只青蛙每跳一次都会发出’WA’的一声。codeJan想在一些青蛙的位置上放置黑洞来收集全部的青蛙。在黑洞位置上的青蛙会直接掉进黑洞中不会发出任何叫声,其余的青蛙经过若干次跳跃都会掉进在它前面的最近的黑洞。因为WA类似WrongAnswer,所以codeJan想要知道他合理地安排黑洞的位置,最少可以听到多少声WA?在听到最少声WA时,需要准备的每个黑洞的容量至少为多少?黑洞的容量体现为可以容纳的青蛙的最大数量,所有黑洞的容量应该都相同。

输入描述:

第一行一个正整数T≤20表示测试组数。每组测试样例的第一行是两个正整数n,m,分别表示存在青蛙的位置和可以放置黑洞的数量。接下来n行,每行包含两个正整数a[i],b[i]分别表示第i组青蛙的位置(单位:米)和这个位置上青蛙的数量。

输出描述:

对于每组测试用例用一行输出两个正整数分别表示最少可以听到多少声WA和黑洞的最少容量。用空格隔开,行末无空格。
示例1

输入

2
3 1
1 1
2 2
3 3
3 2
1 1
4 2
2 3

输出

8 6
3 4

说明

对于第一个样例,只能放在 1 位置,因此听到的 WA 的次数为:1*0+2*1+3*2=8,所有青蛙汇聚在一次,容量至少为 6。
对于第二个样例,可以放在 1 和 4 位置,因此听到的 WA 的次数为:1*0+3*1+2*0=3,1 位置和 2 位置的青蛙汇聚在一 起,需要容量为 4;4 位置的青蛙单独在一起,需要容量为 2。因此容量至少为 4

备注:

输入保证a[i] ≠a[j](i ≠j),1≤m≤n≤100,1≤a[i],b[i]≤106。

题解

$dp$,二分。

$dp[i][j]$表示到$i$位置,分了$j$段的最小花费,每一个区间的花费可以预处理。

$dp[1][m]$就是第一个答案。

对于第二个答案,容量越大,最小花费肯定越小,容量越小,最小花费越大,利用这个单调性就可以二分,假设二分到的容量为$x$,那么$dp$的时候外加一个条件控制一下区间和要小于等于$x$。

#include <bits/stdc++.h>
using namespace std; const int maxn = 100 + 10;
int T, n, m;
struct X {
int a, b;
}s[maxn];
long long cost[maxn][maxn];
long long dp[maxn][maxn];
long long sum[maxn][maxn];
long long limit; bool cmp(const X& a, const X& b) {
return a.a < b.a;
} int check(long long mid) {
for(int i = 1; i <= n; i ++) {
dp[i][1] = 1e18;
if(sum[i][n] <= mid) dp[i][1] = cost[i][n];
}
for(int j = 2; j <= m; j ++) {
for(int i = n - j + 1; i >= 1; i --) {
dp[i][j] = 1e18;
for(int k = i + 1; k <= n; k ++) {
if(dp[k][j - 1] != 1e18 && sum[i][k - 1] <= mid) {
dp[i][j] = min(dp[i][j], dp[k][j - 1] + cost[i][k - 1]);
}
}
}
}
if(limit == dp[1][m]) return 1;
return 0;
} int main() {
scanf("%d", &T);
while(T --) {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) {
scanf("%d%d", &s[i].a, &s[i].b);
}
sort(s + 1, s + 1 + n, cmp);
for(int i = 1; i <= n; i ++) {
for(int j = i; j <= n; j ++) {
cost[i][j] = cost[i][j - 1] + 1LL * (s[j].a - s[i].a) * s[j].b;
sum[i][j] = sum[i][j - 1] + s[j].b;
}
}
for(int i = 1; i <= n; i ++) dp[i][1] = cost[i][n];
for(int j = 2; j <= m; j ++) {
for(int i = n - j + 1; i >= 1; i --) {
dp[i][j] = 1e18;
for(int k = i + 1; k <= n; k ++) {
dp[i][j] = min(dp[i][j], dp[k][j - 1] + cost[i][k - 1]);
}
}
}
limit = dp[1][m];
long long ans2 = sum[1][n];
long long L = 1, R = ans2;
while(L <= R) {
long long mid = (L + R) / 2;
if(check(mid)) ans2 = mid, R = mid - 1;
else L = mid + 1;
}
printf("%lld %lld\n", limit, ans2);
}
return 0;
}

Wannafly挑战赛7 D - codeJan与青蛙的更多相关文章

  1. Wannafly挑战赛7 B - codeJan与旅行

    题目描述 codeJan 非常喜欢旅行.现在有 n 个城市排在一条线上,并且 codeJan 的位置不和任何一个城市的位置重叠.codeJan 想要游览 m 个城市,同时因为时间是不断变化的,游览一个 ...

  2. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  3. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  4. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  5. Wannafly挑战赛21A

    题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define ...

  6. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  7. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  8. Wannafly挑战赛18B 随机数

    Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{ ...

  9. Wannafly挑战赛22游记

    Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...

随机推荐

  1. sourceTree的下载与安装

    一. SourceTree是什么? 一个拥有可视化界面的项目版本控制的软件,适用于git项目管理,在window和mac均可使用. 二. SourceTree下载 下载地址:SourceTree官网 ...

  2. swiper.js的使用

    点击api文档地址, (1)图片轮播banner <script src="js/jquery-2.1.4.min.js"></script> <sc ...

  3. Bargaining Table

    Bargaining Table time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  4. 部署维护docker环境

    其实前面已经用salt,安装部署了docker应用环境了,过程中还是遇到了不少问题,所以这里再相对仔细的记录一下,docker手机安装过程应注意的事情 安装过程部分参考了刘天斯大师文档部署 1,安装环 ...

  5. 【BZOJ】4032: [HEOI2015]最短不公共子串(LibreOJ #2123)

    [题意]给两个小写字母串A,B,请你计算: (1) A的一个最短的子串,它不是B的子串 (2) A的一个最短的子串,它不是B的子序列 (3) A的一个最短的子序列,它不是B的子串 (4) A的一个最短 ...

  6. 面向对象 ( OO ) 的程序设计——理解对象

    本文地址:http://www.cnblogs.com/veinyin/p/7607938.html  1 创建自定义对象 创建自定义对象的最简单方法为创建 Object 的实例,并添加属性方法,也可 ...

  7. 56、isinstance作用以及应用场景?

    isinstance作用:来判断一个对象是否是一个已知的类型: 其第一个参数(object)为对象,第二个参数为类型名(int...)或类型名的一个列表((int,list,float)是一个列表). ...

  8. eclipse加速/Nginx配置跨域代理

    下班时间到啦! --下班都是他们的,而我,还是什么都没有. eclipse加速 去掉包含js文件的包的js验证,否则每次启动都需要进行校验(右击项目->properties) Nginx配置跨域 ...

  9. python基础之常用内置函数

    前言 python有许多内置的函数,它们定义在python的builtins模块,在python的代码中可以直接使用它们. 常用的内置函数 类型转换 int python的整数类型都是int类型的实例 ...

  10. ip_rcv && ip_rcv_finish

    (1) 在inet_init中注册了类型为ETH_P_IP协议的数据包的回调ip_rcv (2) 当二层数据包接收完毕,会调用netif_receive_skb根据协议进行向上层分发 (3) 类型为E ...