题目链接:poj1780-Code

题意:有个保险箱子是n位数字编码,当正确输入最后一位编码后就会打开(即输入任意多的数字只有最后n位数字有效)……要选择一个好的数字序列,最多只需按键10n+n-1次就可以打开保险箱子,即要找到一个数字序列包含所有的n位数一次且仅一次。序列要为字典序。

题解:首先明白为什么是最多只需按键10n+n-1次。n位数有10n 种编码方案,要一个数字序列包含10n 组n位数且序列最短,只可能是每组数出现一次且仅一次,且前一组数的后n-1位与后一组数的前n-1位相同,10n组数各取一位,再加上最后一组数的n-1位,总共10n +n-1位,如下所示:

第一组:d1 d2 d3…dn

第二组:     d2 d3 d4…d(n+1)

第10n组:…d(10n+n-3) d(10n+n-2) d(10n+n-1)

然后,把n-1位看成一个图中顶点,将n-1位后加一个数字(0~9)的序列看成一条边,共10n-1个顶点,10n条边,且每条边都不相同,所以这10n组不同的n位数对应图中的一个 欧拉通路。(怎么想过来的呢,你仔细看题目都提示了:题中说,保险箱始终处于10n-1种内部状态之一,假如正确编码为4567,”开锁状态“就是456,如果再输入7就开锁了,如果输入8就切换到新的状态568,然后就想转化到图上来了,把内部状态(n-1位的序列)看成顶点咯。要求解的序列最短,就是从一个顶点出发不重复地遍历所有边到达终点,这不就是赤裸裸的欧拉回路么0.0+)

注意,该题直接用递归的方法会导致栈溢出,所以要显式地用栈来实现。存储结果时优先存较大值,这样对结果栈逆序输出时就是按字典序排列啦。

代码实现:

#include<cstdio>
const int N=1e5;
int node[N],stack[*N];
char ans[*N];//结果栈
int s,a;
int m;
void Search(int v){//将当前顶点延伸
int w;
while(node[v]<){//可以在v(n-1位的序列)后加0~9构成10条边
w=*v+node[v];
node[v]++;
stack[s++]=w;
v=w%m;
}
}
int main(){
int n,i,w;
while(scanf("%d",&n)&&n!=){
if(n==){
printf("0123456789\n");
continue;
}
s=a=w=;
m=;
for(i=;i<n-;++i) m*=;
for(i=;i<m;++i) node[i]=;
Search();
while(s){
w=stack[--s];
ans[a++]=w%+'';
Search(w/);
}
for(i=;i<n;++i) printf("");
while(a) printf("%c",ans[--a]);
printf("\n");
}
return ;
}

POJ1780-Code(欧拉路径求解)的更多相关文章

  1. POJ1780 Code(欧拉路径)

    n位密码,要用尽可能短的序列将n位密码的10n种状态的子串都包括,那么要尽量地重合. 题目已经说最短的是10n + n - 1,即每一个状态的后n-1位都和序列中后一个状态的前n-1位重合. 这题是经 ...

  2. POJ1780 Code

    KEY公司开发出一种新的保险箱.要打开保险箱,不需要钥匙,但需要输入一个正确的.由n位数字组成的编码.这种保险箱有几种类型,从给小孩子玩的玩具(2位数字编码)到军用型的保险箱(6位数字编码).当正确地 ...

  3. NPC问题及其解决方法(回溯法、动态规划、贪心法、深度优先遍历)

    NP问题(Non-deterministic Polynomial ):多项式复杂程度的非确定性问题,这些问题无法根据公式直接地计算出来.比如,找大质数的问题(有没有一个公式,你一套公式,就可以一步步 ...

  4. 再谈循环&迭代&回溯&递归&递推这些基本概念

    循环:不断重复进行某一运算.操作. 迭代:不断对前一旧值运算得到新值直到达到精度.一般用于得到近似目标值,反复循环同一运算式(函数),并且总是把前一 次运算结果反代会运算式进行下一次运算 递推:从初值 ...

  5. low-rank 的相关求解方法 (CODE) Low-Rank Matrix Recovery and Completion via Convex Optimization

    (CODE) Low-Rank Matrix Recovery and Completion via Convex Optimization 这个是来自http://blog.sina.com.cn/ ...

  6. ACM/ICPC 之 暴力打表(求解欧拉回路)-编码(POJ1780)

    ///找到一个数字序列包含所有n位数(连续)一次且仅一次 ///暴力打表 ///Time:141Ms Memory:2260K #include<iostream> #include< ...

  7. C++ code:数值计算之辛普生(Simpson)法求解积分问题

  8. C++ code:数值计算之矩形法求解积分问题

    积分的通常方法是将区域切割成一个个的小矩形,然后求这些小矩形的和.小矩形切割得越细,计算精度就越高,可以将切割小矩形的数量作为循环迭代变量,将前后两个不同精度下的小矩形和之差,作为逼近是否达到要求的比 ...

  9. RNN求解过程推导与实现

    RNN求解过程推导与实现 RNN LSTM BPTT matlab code opencv code BPTT,Back Propagation Through Time. 首先来看看怎么处理RNN. ...

随机推荐

  1. 用PyAIML开发简单的对话机器人

    AIML files are a subset of Extensible Mark-up Language (XML) that can store different text patterns ...

  2. I2C总线信号时序总结

    I2C总线信号时序总结 总线空闲状态  I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态.此时各个器件的输出级场效应管均处在截止状态,即释放总线,由两条信号线各自的上拉电 ...

  3. CUBRID学习笔记 31 通过select创建表

    语法 CREATE {TABLE | CLASS} <table_name> [( <column_definition> [,<table_constraint> ...

  4. CSS笔记(五)字体

    CSS 字体属性定义文本的字体系列.大小.加粗.风格(如斜体)和变形(如小型大写字母). 参考:http://www.w3school.com.cn/css/css_font.asp CSS字体系列 ...

  5. weblogic与axis2 jar包冲突

    1.org.springframework.web.util.NestedServletException: Handler processing failed; nested exception i ...

  6. iOS - OC NSDate 时间

    前言 NSDate @interface NSDate : NSObject <NSCopying, NSSecureCoding> NSDate 用来表示公历的 GMT 时间(格林威治时 ...

  7. iOS - MVC 架构模式

    1.MVC 从字面意思来理解,MVC 即 Modal View Controller(模型 视图 控制器),是 Xerox PARC 在 20 世纪 80 年代为编程语言 Smalltalk-80 发 ...

  8. JdbcTemplate操作数据库

    1.JdbcTemplate操作数据库 Spring对数据库的操作在jdbc上面做了深层次的封装,使用spring的注入功能,可以把DataSource注册到JdbcTemplate之中.同时,为了支 ...

  9. 学会使用JDK API

    api是字典,知识过了一遍之后,剩下的就是实践+百度+api了

  10. CentOS用yum快速安装nginx

    增加nginx源 vim  /etc/yum.repos.d/nginx.repo [nginx] name=nginx repo baseurl=http://nginx.org/packages/ ...