Atlantis

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8327    Accepted Submission(s): 3627

Problem Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
 
Input
The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.

 
Output
For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

 
Sample Input
2
10 10 20 20
15 15 25 25.5
0
 
Sample Output
Test case #1
Total explored area: 180.00
 
Source
 
 
题目意思:
给出n个矩形,求总面积(覆盖的只算一次)
 
思路:
扫描线模板题
 
代码:
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
using namespace std; #define N 105
#define ll root<<1
#define rr root<<1|1
#define mid (a[root].l+a[root].r)/2 int max(int x,int y){return x>y?x:y;}
int min(int x,int y){return x<y?x:y;}
int abs(int x,int y){return x<?-x:x;} struct node{
int l, r;
double sum;
int val;
}a[N*]; struct Line{
double x1, x2, y;
int val;
Line(){}
Line(double a,double b,double c,int d){
x1=a;
x2=b;
y=c;
val=d;
}
}line[N*]; bool cmp(Line a,Line b){
return a.y<b.y;
}
int n, m;
double xx[N*]; int b_s(double key){
int l=, r=m;
while(l<=r){
int mm=(l+r)/;
if(xx[mm]==key) return mm;
else if(xx[mm]>key) r=mm-;
else if(xx[mm]<key) l=mm+;
}
} void build(int l,int r,int root){
a[root].l=l;
a[root].r=r;
a[root].sum=a[root].val=;
if(l==r) return;
build(l,mid,ll);
build(mid+,r,rr);
} void up(int root){
if(a[root].val) a[root].sum=xx[a[root].r+]-xx[a[root].l];
else if(a[root].l==a[root].r) a[root].sum=;
else a[root].sum=a[ll].sum+a[rr].sum; } void update(int l,int r,int val,int root){
if(a[root].l==l&&a[root].r==r){
a[root].val+=val;
up(root);
return;
}
if(l>=a[rr].l) update(l,r,val,rr);
else if(r<=a[ll].r) update(l,r,val,ll);
else{
update(l,mid,val,ll);
update(mid+,r,val,rr);
}
up(root);
} main()
{
int i, j, k;
double x1, y1, x2, y2;
int kase=;
while(scanf("%d",&n)==&&n){
m=;k=;
for(i=;i<n;i++){
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
line[k++]=Line(x1,x2,y1,);
line[k++]=Line(x1,x2,y2,-);
xx[m++]=x1;xx[m++]=x2;
}
sort(xx+,xx+m);
m=unique(xx+,xx+m)-xx-;
sort(line,line+k,cmp);
build(,m,);
double ans=0.0;
for(i=;i<k-;i++){
update(b_s(line[i].x1),b_s(line[i].x2)-,line[i].val,);
ans+=a[].sum*(line[i+].y-line[i].y);
}
printf("Test case #%d\n",kase++);
printf("Total explored area: %.2f\n\n",ans);
}
}

HDU 1542 线段树+扫描线+离散化的更多相关文章

  1. hdu 1542 线段树+扫描线 学习

    学习扫描线ing... 玄学的东西... 扫描线其实就是用一条假想的线去扫描一堆矩形,借以求出他们的面积或周长(这一篇是面积,下一篇是周长) 扫描线求面积的主要思想就是对一个二维的矩形的某一维上建立一 ...

  2. hdu 4419 线段树 扫描线 离散化 矩形面积

    //离散化 + 扫描线 + 线段树 //这个线段树跟平常不太一样的地方在于记录了区间两个信息,len[i]表示颜色为i的被覆盖的长度为len[i], num[i]表示颜色i 『完全』覆盖了该区间几层. ...

  3. 覆盖的面积 HDU - 1255 线段树+扫描线+离散化 求特定交叉面积

    #include<cstdio> #include<map> #include<algorithm> using namespace std; ; struct N ...

  4. Atlantis HDU - 1542 线段树+扫描线 求交叉图形面积

    //永远只考虑根节点的信息,说明在query时不会调用pushdown //所有操作均是成对出现,且先加后减 // #include <cstdio> #include <cstri ...

  5. hdu 1542 线段树扫描(面积)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  6. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. hdu 4052 线段树扫描线、奇特处理

    Adding New Machine Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. hdu 1828 线段树扫描线(周长)

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]

    题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...

随机推荐

  1. mysql存入数据出错总结

    ELECT t0.accusation_des, t0.submit_time, t0.result, t0.handle_time, t1.content, t4.nick_name,t5.cont ...

  2. java按值传递相关理解

    Java没有引用传递只有按值传递,没有引用传递只有按值传递,值传递. 1. public class Test {     public static void main(String[] args ...

  3. R语言实战

    教材目录 第一部分 入门 第一章 R语言介绍 第二章 创建数据集 第三章 图形初阶 第四章 基本数据管理 第五章 高级数据管理 第二部分 基本方法 第六章 基本图形 第七章 基本统计方法 第三部分 中 ...

  4. 项目二:使用机器学习(SVM)进行基因预测

    SVM软件包 LIBSVM -- A Library for Support Vector Machines(本项目所用到的SVM包)(目前最新版:libsvm-3.21,2016年7月8日) C-S ...

  5. 【转】 Linux下目录结构

    装完Linux,首先需要弄清Linux 标准目录结构 / root — 启动Linux时使用的一些核心文件.如操作系统内核.引导程序Grub等. home — 存储普通用户的个人文件 ftp — 用户 ...

  6. NOI LINUX装机记

    装了差不多一天啊!! 首先自己用虚拟光驱来运行,然后莫名其妙就炸了. 搞到最后刻了一个盘. 然后装完linux之后发现回不到windows7了. 网上找各种资料. 最后搞了个root,再启动的文件中加 ...

  7. 20145218《Java程序设计》第一周学习总结

    20145218 <Java程序设计>第一周学习总结 教材学习内容总结 今天下午看了Java学习的视频,感觉很是新奇,之前觉得Java学起来是艰难枯燥的,但通过第一章的学习觉得如果自己可以 ...

  8. Spring事务的传播特性和隔离级别

    事务的几种传播特性1. PROPAGATION_REQUIRED: 如果存在一个事务,则支持当前事务.如果没有事务则开启2. PROPAGATION_SUPPORTS: 如果存在一个事务,支持当前事务 ...

  9. (14)odoo加载机制

    Odoo的启动通过openerp-server脚本完成,它是系统的入口. 然后加载配置文件openerp-server.conf 或者 .openerp_serverrc: openerp-serve ...

  10. mvc json post执行顺序

    function GetFlightNo() {        var falg = false; var value = $("#No").val();        $.pos ...