Atlantis

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8327    Accepted Submission(s): 3627

Problem Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
 
Input
The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.

 
Output
For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

 
Sample Input
2
10 10 20 20
15 15 25 25.5
0
 
Sample Output
Test case #1
Total explored area: 180.00
 
Source
 
 
题目意思:
给出n个矩形,求总面积(覆盖的只算一次)
 
思路:
扫描线模板题
 
代码:
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
using namespace std; #define N 105
#define ll root<<1
#define rr root<<1|1
#define mid (a[root].l+a[root].r)/2 int max(int x,int y){return x>y?x:y;}
int min(int x,int y){return x<y?x:y;}
int abs(int x,int y){return x<?-x:x;} struct node{
int l, r;
double sum;
int val;
}a[N*]; struct Line{
double x1, x2, y;
int val;
Line(){}
Line(double a,double b,double c,int d){
x1=a;
x2=b;
y=c;
val=d;
}
}line[N*]; bool cmp(Line a,Line b){
return a.y<b.y;
}
int n, m;
double xx[N*]; int b_s(double key){
int l=, r=m;
while(l<=r){
int mm=(l+r)/;
if(xx[mm]==key) return mm;
else if(xx[mm]>key) r=mm-;
else if(xx[mm]<key) l=mm+;
}
} void build(int l,int r,int root){
a[root].l=l;
a[root].r=r;
a[root].sum=a[root].val=;
if(l==r) return;
build(l,mid,ll);
build(mid+,r,rr);
} void up(int root){
if(a[root].val) a[root].sum=xx[a[root].r+]-xx[a[root].l];
else if(a[root].l==a[root].r) a[root].sum=;
else a[root].sum=a[ll].sum+a[rr].sum; } void update(int l,int r,int val,int root){
if(a[root].l==l&&a[root].r==r){
a[root].val+=val;
up(root);
return;
}
if(l>=a[rr].l) update(l,r,val,rr);
else if(r<=a[ll].r) update(l,r,val,ll);
else{
update(l,mid,val,ll);
update(mid+,r,val,rr);
}
up(root);
} main()
{
int i, j, k;
double x1, y1, x2, y2;
int kase=;
while(scanf("%d",&n)==&&n){
m=;k=;
for(i=;i<n;i++){
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
line[k++]=Line(x1,x2,y1,);
line[k++]=Line(x1,x2,y2,-);
xx[m++]=x1;xx[m++]=x2;
}
sort(xx+,xx+m);
m=unique(xx+,xx+m)-xx-;
sort(line,line+k,cmp);
build(,m,);
double ans=0.0;
for(i=;i<k-;i++){
update(b_s(line[i].x1),b_s(line[i].x2)-,line[i].val,);
ans+=a[].sum*(line[i+].y-line[i].y);
}
printf("Test case #%d\n",kase++);
printf("Total explored area: %.2f\n\n",ans);
}
}

HDU 1542 线段树+扫描线+离散化的更多相关文章

  1. hdu 1542 线段树+扫描线 学习

    学习扫描线ing... 玄学的东西... 扫描线其实就是用一条假想的线去扫描一堆矩形,借以求出他们的面积或周长(这一篇是面积,下一篇是周长) 扫描线求面积的主要思想就是对一个二维的矩形的某一维上建立一 ...

  2. hdu 4419 线段树 扫描线 离散化 矩形面积

    //离散化 + 扫描线 + 线段树 //这个线段树跟平常不太一样的地方在于记录了区间两个信息,len[i]表示颜色为i的被覆盖的长度为len[i], num[i]表示颜色i 『完全』覆盖了该区间几层. ...

  3. 覆盖的面积 HDU - 1255 线段树+扫描线+离散化 求特定交叉面积

    #include<cstdio> #include<map> #include<algorithm> using namespace std; ; struct N ...

  4. Atlantis HDU - 1542 线段树+扫描线 求交叉图形面积

    //永远只考虑根节点的信息,说明在query时不会调用pushdown //所有操作均是成对出现,且先加后减 // #include <cstdio> #include <cstri ...

  5. hdu 1542 线段树扫描(面积)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  6. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. hdu 4052 线段树扫描线、奇特处理

    Adding New Machine Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. hdu 1828 线段树扫描线(周长)

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]

    题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...

随机推荐

  1. Swift语言学习之学习资源

    (1) http://swift.sh (2) Let's Swift – WRITE THE CODE. CHANGE THE WORLD. http://letsswift.com (3)http ...

  2. iOS--获取输入字符的第一个字母(汉字则获取拼音的第一个字母)

    - (NSString *)firstCharactor:(NSString *)aString { //转成了可变字符串 NSMutableString *str = [NSMutableStrin ...

  3. JavaScript 开发进阶:理解 JavaScript 作用域和作用域链(转载 学习中。。。)

    作用域是JavaScript最重要的概念之一,想要学好JavaScript就需要理解JavaScript作用域和作用域链的工作原理.今天这篇文章对JavaScript作用域和作用域链作简单的介绍,希望 ...

  4. OpenGL中各种坐标系的理解[转]

    OPENGL坐标系可分为:世界坐标系和当前绘图坐标系. 世界坐标系:在OpenGL中,世界坐标系是以屏幕中心为原点(0, 0, 0),且是始终不变的.你面对 屏幕,你的右边是x正轴,上面是y正轴,屏幕 ...

  5. Java多线程同步的方法

    一 synchronized关键字 1.synchronized实现原理: ---基于对象监视器(锁) java中所有对象都自动含有单一的锁,JVM负责跟踪对象被加锁的次数.如果一个对象被解锁,其计数 ...

  6. Selenium解决页面元素不在视野范围内的问题

    当需要使用滚动条才能使页面元素显示在视野范围内时,必须用代码处理下,才能对其进行操作. 处理其实也很简单,就是调用JS函数. driver.executeScript("arguments[ ...

  7. java 多线程6(线程的·通讯)

    问题1: 为什么wait() 和 notify()是Object类中的方法,而不是Thread类中的方法呢? 答:因为锁是任意对象的所以要在Object类中,如果在Thread类中锁对象不是任意的了. ...

  8. android内存泄露小谈

    在做android的时候,用的语言大部分情况下都是java.以前最开始做的是编译器开发, 大部分情况都是用c语言和x86与arm架构的汇编,后来接触到ios用的是OC.对比之下, 感觉还是java用起 ...

  9. jq实现 禁止对密码框中的内容进行复制、剪切和粘贴操作

    $(function () { $("input:password").on("copy cut paste", function (e) { return f ...

  10. Simplify Path [LeetCode]

    Given an absolute path for a file (Unix-style), simplify it. For example,path = "/home/", ...