[再寄小读者之数学篇](2014-11-24 Abel 定理)
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|<1$ 内收敛, 且 $\dps{\sum_{n=0}^\infty a_n=s}$ 收敛. 则 $$\bex \lim_{x\to 1^-} g(x)=s. \eex$$
证明: 记 $s_n=a_0+\cdots +a_n$, 则 $\dps{\vlm{n}s_n=s}$. 写出 $$\beex \bea \sum_{k=0}^n a_kx^k &=a_0+\sum_{k=1}^n (s_k-s_{k-1})x^k\\ &=a_0+\sum_{k=1}^n s_kx^k-\sum_{k=0}^{n-1}s_kx^{k+1}\\ &=a_0+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n-s_0x\\ &=s_0(1-x)+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n\\ &=\sum_{k=0}^{n-1} s_kx^k(1-x) +s_nx^n\quad\sex{|x|<1}. \eea \eeex$$ 令 $n\to\infty$ 有 $$\bex g(x)=\sum_{k=0}^\infty s_kx^k(1-x), \eex$$ 又 $\dps{\vlm{n}s_n=s}$, $$\bex \forall\ \ve>0,\ \exists\ N,\st k>N\ra |s_k-s|<\ve. \eex$$ 而 $$\beex \bea |g(x)-s| &=\sev{(1-x)\sum_{k=0}^\infty (s_k-s)x^k}\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|\cdot |x|^k +\sum_{k=N+1}^\infty|s_k-s|\cdot |x|^k\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|+\ve. \eea \eeex$$ 令 $x\to 1^-$ 有 $$\bex \lim_{x\to 1^-}|g(x)-s|\leq \ve. \eex$$ 由 $\ve$ 的任意性即知 $$\bex \lim_{x\to 1^-}|g(x)-s|=0. \eex$$
[再寄小读者之数学篇](2014-11-24 Abel 定理)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- JavaWeb笔记——下载文件
核心内容是两个头一个流 > 头:Content-Type:你传递给客户端的文件是什么MIME类型,例如:image/pjpeg * 通过文件名称调用ServletCont ...
- jquery.flip插件翻转效果
首先去网站http://lab.smashup.it/flip/下载插件 简单应用: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran ...
- Java:抽象类abstract和接口Interface
一.抽象类:abstract 抽象类就是为了继承而存在的,如果你定义了一个抽象类,却不去继承它,那么等于白白创建了这个抽象类,因为你不能用它来做任何事情.对于一个父类,如果它的某个方法在父类中实现出来 ...
- TCP三次握手和四次挥手过程及套接字在各个过程中的状态解析
说起TCP,我们一般都需要知道发起一个tcp连接和终止一个tcp连接是所发生的事情,下边,我将跟大家介绍下tcp的三次握手及四次挥手的过程. TCP三路握手 (1)服务器必须准备好接受外来的连接.这通 ...
- 整合Struts2+SiteMesh+Spring+MyFaces(JSF)+Freemarker的时候启动服务器报错ClassNotFoundException: org.apache.struts2.sitemesh.FreeMarkerPageFilter
我一琢磨,难道freemarker与struts2的整合也需要添加一个struts2-freemarker-plugin的jar包? 后来找了半天,确认不需要这个. 然后我就上网搜,这个FreeMar ...
- Servlet如何实现修改后不重启服务器而生效
只需在apache-tomcat-8.0.0-RC10\conf\servlet.xml中修改相关设置: 在<Host name="localhost" appBase ...
- jdk、apache-ant结合yuicompressor配置的CSS与JS合并压缩工具
前序:网上很多css与js合并打包工具,其中最流行的就是ant结合yui-compressor,鉴于学习与工作需要今天就学习了一下这种方式,供大家学习交流. 步骤:1.安装jdk,并配置其变量环境:有 ...
- HDU 2852 KiKi's K-Number 树状数组 + 二分
一共最多才100000个数,并且数值范围0~100000. 树状数组 C[i] 记录数值为 i 的数有多少个. 删除时如果Query( a ) - Query( a - 1 ) == 0 则该数不存在 ...
- HDU 4620 Fruit Ninja Extreme 搜索
搜索+最优性剪枝. DFS的下一层起点应为当前选择的 i 的下一个,即DFS(i + 1)而不是DFS( cur + 1 ),cur+1代表当前起点的下一个.没想清楚,TLE到死…… #include ...
- Session与Cookie
Session与Cookie的比较 Cookie与Session都可以进行会话跟踪,但是实现的原理不太一样.一般情况下二者均可以满足需求,但有时候不可以使用Cookie,有时候不可以使用Session ...