[再寄小读者之数学篇](2014-11-24 Abel 定理)
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|<1$ 内收敛, 且 $\dps{\sum_{n=0}^\infty a_n=s}$ 收敛. 则 $$\bex \lim_{x\to 1^-} g(x)=s. \eex$$
证明: 记 $s_n=a_0+\cdots +a_n$, 则 $\dps{\vlm{n}s_n=s}$. 写出 $$\beex \bea \sum_{k=0}^n a_kx^k &=a_0+\sum_{k=1}^n (s_k-s_{k-1})x^k\\ &=a_0+\sum_{k=1}^n s_kx^k-\sum_{k=0}^{n-1}s_kx^{k+1}\\ &=a_0+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n-s_0x\\ &=s_0(1-x)+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n\\ &=\sum_{k=0}^{n-1} s_kx^k(1-x) +s_nx^n\quad\sex{|x|<1}. \eea \eeex$$ 令 $n\to\infty$ 有 $$\bex g(x)=\sum_{k=0}^\infty s_kx^k(1-x), \eex$$ 又 $\dps{\vlm{n}s_n=s}$, $$\bex \forall\ \ve>0,\ \exists\ N,\st k>N\ra |s_k-s|<\ve. \eex$$ 而 $$\beex \bea |g(x)-s| &=\sev{(1-x)\sum_{k=0}^\infty (s_k-s)x^k}\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|\cdot |x|^k +\sum_{k=N+1}^\infty|s_k-s|\cdot |x|^k\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|+\ve. \eea \eeex$$ 令 $x\to 1^-$ 有 $$\bex \lim_{x\to 1^-}|g(x)-s|\leq \ve. \eex$$ 由 $\ve$ 的任意性即知 $$\bex \lim_{x\to 1^-}|g(x)-s|=0. \eex$$
[再寄小读者之数学篇](2014-11-24 Abel 定理)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 12个QT基本对话框,以及淡入原理(用定时器把窗口逐渐变成透明)
一.基本对话框 1,核心库: 界面程序 QApplication 非程序界面QCoreAppliction 2,消息循环必须执行QApplication.exec(); 3,消息绑定机制: 信号-槽 ...
- Mybatis Interceptor 拦截器原理 源码分析
Mybatis采用责任链模式,通过动态代理组织多个拦截器(插件),通过这些拦截器可以改变Mybatis的默认行为(诸如SQL重写之类的),由于插件会深入到Mybatis的核心,因此在编写自己的插件前最 ...
- openfire插件开发1
http://www.cnblogs.com/hoojo/archive/2013/03/29/openfire_plugin_chatlogs_plugin_.html http://www.cnb ...
- Android HTTPS(4)直接用SSLSocket,黑名单,客户端证书
Warnings About Using SSLSocket Directly So far, the examples have focused on HTTPS using HttpsURLCon ...
- Python风格规范
Python风格规范 分号 Tip 不要在行尾加分号, 也不要用分号将两条命令放在同一行. 行长度 Tip 每行不超过80个字符 例外: 长的导入模块语句 注释里的URL 不要使用反斜杠连接行. Py ...
- Android实现分享内容到微信朋友圈
原文地址:http://yanwushu.sinaapp.com/android_wechat_share/ 由于需求,要实现在应用中实现分享文字+图片到微信朋友圈.在网上找了一些资料,总结如下: 思 ...
- c#调用系统资源大集合-1
using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServi ...
- CSS构造表单
结构化表单布局 <head> <meta http-equiv="Content-Type" content="text/html; charset=G ...
- 基于百度地图js进行地理定位
http://www.mengxiangchaoren.com/jquery.select.position.min.js 使用方法 $("#myCity").renderSele ...
- MVC简捷调用EasyUI的datagrid
一直想在项目中使用EasyUi的datagrid,但种种原因,没有实现. 这两天在开发一个项目中,愿望终于得以实现. 先看效果: 实现步骤是这样的: 1,在页面中画dataGrid,具体代码如下: & ...