【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
题面
题解
翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时的\(SG\)函数的异或和。现在要考虑的是如何求解单一硬币存在于场上时的\(SG\)函数,这种东西。。。。打表吧。。。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int lowbit(int x){return x&(-x);}
int getSG(int i,int j)
{
if(i&&j)return i+j;
return log2(lowbit(i+j+1));
}
int n,m,SG;char g[500];bool vis[500];
int main()
{
int T=read();
while(T--)
{
n=read();m=read();SG=0;
for(int i=0;i<n;++i)
{
scanf("%s",g);
for(int j=0;j<m;++j)
if(g[j]=='T')
vis[getSG(i,j)]^=1;
}
for(int i=0;i<n+m-1;++i)if(vis[i])SG=1;
puts(SG?"-_-":"=_=");
for(int i=0;i<n+m-1;++i)vis[i]=0;
}
return 0;
}
【BZOJ1434】[ZJOI2009]染色游戏(博弈论)的更多相关文章
- BZOJ1434:[ZJOI2009]染色游戏(博弈论)
Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...
- bzoj1434 [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- [luogu2594 ZJOI2009]染色游戏(博弈论)
传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...
- [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- BZOJ 1434: [ZJOI2009]染色游戏
一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...
- luogu2594 [ZJOI2009]染色游戏
做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...
- BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 897 Solved: 394[Submit][Status ...
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
随机推荐
- WPF编程,使用WindowChrome实现自定义窗口功能的一种方法。
原文:WPF编程,使用WindowChrome实现自定义窗口功能的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/arti ...
- Node.js 下载路径/微软产品下载路径
https://nodejs.org/en/ https://www.microsoft.com/en-us/download //微软官方下载地址,可以下载VS2015 SQL 等 微软产品
- SPA程序加载首界面eclipse卡顿解决笔记
最近在开发SPA程序项目时遇到一个问题,因为是在开发阶段,所以直接就在eclipse中启动项目. 每次进入首界面时,eclipse就会长时间卡顿,前端界面也加载不出来,很影响开发效率. 在查找问题的时 ...
- H5——video百花齐放(浏览器自带的播放器)
前言 手机自带浏览器的H5播放器 真是百花齐放啊(各个手机厂家有各个厂家的控件UI) 需求 手机浏览器木有控件条 自动播放 全屏处理 监控进度条 快进后退 自动播放 自动播放就给跪了 ios 安卓 为 ...
- JavaScript快速入门-ECMAScript语句
JavaScript语句(if.for.for in.do...while.while.break.continue.switch) 一.if语句 if (condition) statement1 ...
- 网站遭受大量CC攻击后的应对策略
上周开始我网站遭受了一大波CC攻击,到目前为止仍在继续,作为一个建站小白,我感觉压力好大,又有新的问题要挑战了! 服务器架设在腾讯云,CC攻击很凶猛,带宽瞬间占满,于是在腾讯云后台配置安全组关闭了80 ...
- 7. Reverse Integer【Leetcode by java】
Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Output: 321 Examp ...
- Python机器学习/LinearRegression(线性回归模型)(附源码)
LinearRegression(线性回归) 2019-02-20 20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...
- PAT甲题题解-1076. Forwards on Weibo (30)-BFS
题目大意:给出每个用户id关注的人,和转发最多的层数L,求一个id发了条微博最多会有多少个人转发,每个人只考虑转发一次.用BFS,同时每个节点要记录下所在的层数,由于只能转发一次,所以每个节点要用vi ...
- ini_set的用法介绍
https://www.cnblogs.com/xieqian111/p/5367732.html