【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
题面
题解
翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时的\(SG\)函数的异或和。现在要考虑的是如何求解单一硬币存在于场上时的\(SG\)函数,这种东西。。。。打表吧。。。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int lowbit(int x){return x&(-x);}
int getSG(int i,int j)
{
if(i&&j)return i+j;
return log2(lowbit(i+j+1));
}
int n,m,SG;char g[500];bool vis[500];
int main()
{
int T=read();
while(T--)
{
n=read();m=read();SG=0;
for(int i=0;i<n;++i)
{
scanf("%s",g);
for(int j=0;j<m;++j)
if(g[j]=='T')
vis[getSG(i,j)]^=1;
}
for(int i=0;i<n+m-1;++i)if(vis[i])SG=1;
puts(SG?"-_-":"=_=");
for(int i=0;i<n+m-1;++i)vis[i]=0;
}
return 0;
}
【BZOJ1434】[ZJOI2009]染色游戏(博弈论)的更多相关文章
- BZOJ1434:[ZJOI2009]染色游戏(博弈论)
Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...
- bzoj1434 [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- [luogu2594 ZJOI2009]染色游戏(博弈论)
传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...
- [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- BZOJ 1434: [ZJOI2009]染色游戏
一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...
- luogu2594 [ZJOI2009]染色游戏
做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...
- BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 897 Solved: 394[Submit][Status ...
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
随机推荐
- 1.2《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——开始第一条命令
现在开始准备运行我们的第一条命令了,在屏幕上打印'hello'.(字符打印的地方被称为'标准输出',通常指的是屏幕,很少指真的物理打印机设备).这条命令就是echo,这条命令的参数是想要输出的字符串或 ...
- Django Rest Framework源码剖析(七)-----分页
一.简介 分页对于大多数网站来说是必不可少的,那你使用restful架构时候,你可以从后台获取数据,在前端利用利用框架或自定义分页,这是一种解决方案.当然django rest framework提供 ...
- 20155204《网络对抗》Exp 6 信息搜集与漏洞扫描
20155204<网络对抗>Exp 6 信息搜集与漏洞扫描 一.实验后回答问题 1.哪些组织负责DNS,IP的管理. 互联网名称与数字地址分配机构,简称ICANN机构,决定了域名和IP地址 ...
- LOJ#2799. 「CCC 2016」生命之环
题意 给你一个 \(n\) 个 \(\rm 01\) 组成的环,每次操作之后每个位置为1当且仅当他的左右恰好有1个1.输出进行 \(T\) 次操作之后的环. \(n\leq 10^5, T\leq 1 ...
- 9、Dockerfile实战-Nginx
上一节我们详解Dockerfile之后,现在来进行实战.我们通过docker build来进行镜像制作. build有如下选项: [root@localhost ~a]# docker build - ...
- CSS技巧收集——毛玻璃效果
先上 demo和 源码 其实毛玻璃的模糊效果技术上比较简单,只是用到了 css 滤镜(filter)中的 blur 属性.但是要做一个好的毛玻璃效果,需要注意很多细节. 比如我们需要将上图中页面中间的 ...
- gulp.src()内部实现探究
写在前面 本来是想写个如何编写gulp插件的科普文的,突然探究欲又发作了,于是就有了这篇东西...翻了下源码看了下gulp.src()的实现,不禁由衷感慨:肿么这么复杂... 进入正题 首先我们看下g ...
- AssetBundleMaster
AssetBundleMaster is an integrated solution for build AssetBundle and load assets from AssetBundles ...
- DevOps架构下如何进行微服务性能测试?
一. 微服务架构下的性能测试挑战 微服务与DevOps 微服务是实现DevOps的重要架构 微服务3S原则 DevOps核心点 微服务架构下的业务特点 亿级用户的平台 单服务业务随时扩容 服务之间存在 ...
- #个人博客作业Week1——浏览教材后提出的5个问题
1.对于MSF的团队模型,请问是团队中的哪个角色监督9项原则的实现?是否会浪费时间和精力在践行9项原则上?2.在调查用户需求和用户体验时如何让不同阶层的用户更多的参与度?3.想成为一位优秀的PM需要从 ...