算$m^n-m*(m-1)^{n-1}$,就是总的减去不越狱的,不越狱就每次都选一个和上一个不一样的

bzoj1008/luogu3197 越狱 (快速幂)的更多相关文章

  1. BZOJ1008 [HNOI2008]越狱 快速幂

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...

  2. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  3. bzoj1008 [HNOI2008]越狱——快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 (这样一道水题还因为忘记写 %lld WA了那么多遍) 发生越狱的状态数,就是全部状态 ...

  4. [HNOI2008] 越狱 快速幂

    [HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...

  5. BZOJ 1008: [HNOI2008]越狱-快速幂/取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  6. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  7. [HNOI2008]越狱 快速幂 逆推

    考虑越狱的情况有些复杂,不如考虑总情况减去不越狱的情况. 显然,总情况为 $m^n$ 种,不越狱的情况为 $m*(m-1)*(m-1)*(m-1)....$ 即为 $m*(m-1)^(n-1)$. 做 ...

  8. bzoj1008: [HNOI2008]越狱 数学公式+快速幂

    bzoj1008: [HNOI2008]越狱      O(log N)---------------------------------------------------------------- ...

  9. BZOJ-1008 越狱 数论快速幂

    1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6192 Solved: 2636 [Submit][Status] ...

随机推荐

  1. 20155318 《网络攻防》Exp2 后门原理与实践

    20155318 <网络攻防>Exp2 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 下载软件前要勾选一些用户协议,其中部分就存在后门进入系统的安全隐患. ...

  2. 实践:IIS7下访问ashx页面,显示404

    问题描述 1.路径什么的都对,这方面的原因就不要想了 2.在我的电脑上可以,在同事的电脑上不可以 方案1:未注册ashx的处理应用程序 也就是不知道IIS不知道用什么应用程序处理ashx文件,解决办法 ...

  3. Python 学习 第三篇:数组类型(列表、字典和元组)

    列表和字段都可以在原处进行修改,可以按照需求增长或缩短,并且可以包含任何类型的对象或被嵌套.列表和字典存储的是对象的引用,而不是拷贝. 一,列表 列表是有序的序列,每一个列表项的顺序是固定的,这使得列 ...

  4. Flask学习-Flask app接受第一个HTTP请求

    一.__call__() 在Flask app启动后,一旦uwsgi收到来自web server的请求,就会调用后端app,其实此时就是调用app的__call__(environ,start_res ...

  5. Java英文单词Java基础常见英语词汇

    Java英文单词Java基础常见英语词汇(共70个)                                                                          ...

  6. Unity 音频合并

    将多个音频组合起来进行播放 代码如下: ; [SerializeField] AudioClip s1; [SerializeField] AudioClip s2; [SerializeField] ...

  7. 【独家】K8S漏洞报告|近期bug fix解读&1.11主要bug fix汇总

    内容提要: 1. 高危漏洞CVE-2018-1002105深度解读 2. 11/19--12/11 bug fix汇总分析 3. 1.11重要bug fix解读 4. 1.9重要bug fix解读 在 ...

  8. jumpserver部署

    1.部署环境.安装依赖包 # yum install git python-pip mysql-devel gcc automake autoconf python-devel vim sshpass ...

  9. 机器学习中几种优化算法的比较(SGD、Momentum、RMSProp、Adam)

    有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速 ...

  10. EOS 权限管理之-权限的使用

    首先,跟大家说声抱歉,由于之前一直在准备EOS上线的一些工作,所以,很长时间没有更新内容.今天正好有时间,也想到了一些题材,就来说一下这个话题.本文完全是个人见解,如有不当之处,欢迎指出. 前提回顾: ...