算$m^n-m*(m-1)^{n-1}$,就是总的减去不越狱的,不越狱就每次都选一个和上一个不一样的

bzoj1008/luogu3197 越狱 (快速幂)的更多相关文章

  1. BZOJ1008 [HNOI2008]越狱 快速幂

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...

  2. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  3. bzoj1008 [HNOI2008]越狱——快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 (这样一道水题还因为忘记写 %lld WA了那么多遍) 发生越狱的状态数,就是全部状态 ...

  4. [HNOI2008] 越狱 快速幂

    [HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...

  5. BZOJ 1008: [HNOI2008]越狱-快速幂/取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  6. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  7. [HNOI2008]越狱 快速幂 逆推

    考虑越狱的情况有些复杂,不如考虑总情况减去不越狱的情况. 显然,总情况为 $m^n$ 种,不越狱的情况为 $m*(m-1)*(m-1)*(m-1)....$ 即为 $m*(m-1)^(n-1)$. 做 ...

  8. bzoj1008: [HNOI2008]越狱 数学公式+快速幂

    bzoj1008: [HNOI2008]越狱      O(log N)---------------------------------------------------------------- ...

  9. BZOJ-1008 越狱 数论快速幂

    1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6192 Solved: 2636 [Submit][Status] ...

随机推荐

  1. 一个有趣的异步时序逻辑电路设计实例 ——MFM调制模块设计笔记

    本文从本人的163博客搬迁至此. MFM是改进型频率调制的缩写,其本质是一种非归零码,是用于磁介质硬盘存储的一种调制方式.调制规则有两句话,即两个翻转条件: 1.为1的码元在每个码元的正中进行一次翻转 ...

  2. 20155321 《网络攻防》 Exp2 后门原理与实践

    20155321 <网络攻防> Exp2 后门原理与实践 实验内容 例举你能想到的一个后门进入到你系统中的可能方式? 我觉得人们在平时上网的时候可能会无意识地点击到一些恶意的网站,这些网站 ...

  3. # 20155337《网络对抗》Web基础

    20155337<网络对抗>Exp8 Web基础 实践目标 1. 实践内容 (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写 ...

  4. WPF编程,通过Double Animation动态缩放控件的一种方法。

    原文:WPF编程,通过Double Animation动态缩放控件的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/art ...

  5. 解决debug到jdk源码时不能查看变量值的问题

    目录 如何跟踪jdk源码 1. 编译源码 2. 关联源码 3. 大功告成 如何跟踪jdk源码 看到这个标题大概大家都会在心里想谁还跟踪个源码呀,在eclipse中打个断点,以debug的方式运行,然后 ...

  6. 【HNOI2017】礼物

    题面 题解 显然两个手环只需要一个的亮度增加\(c \in [-m, m]\)和原题是等价的. 于是可以写成这样一个公式: \[ \sum_{i = 1} ^ n(x_i - y_{i+k} + c) ...

  7. Codeforces 954D Fight Against Traffic(BFS 最短路)

    题目链接:Fight Against Traffic 题意:有n个点个m条双向边,现在给出两个点S和T并要增加一条边,问增加一条边且S和T之间距离不变短的情况有几种? 题解:首先dfs求一下S到其他点 ...

  8. Java 多线程(五)之 synchronized 的使用

    目录 1 线程安全 2 互斥锁 3 内置锁 synchronized 3.1 普通同步方法,锁是当前实例对象(this) 3.1.1 验证普通方法中的锁的对象是同一个. 3.1.2 验证不同的对象普通 ...

  9. JavaScript快速入门-ECMAScript本地对象(Date)

    JavaScript中的Date 对象用于处理日期和时间. var myDate=new Date()  #Date 对象会自动把当前日期和时间保存为其初始值. 一.Date对象的方法 方法 示例 n ...

  10. 微软职位内部推荐-Senior Development Lead – Sharepoint

    微软近期Open的职位: SharePoint is a multi-billion dollar enterprise business that has grown from an on-prem ...