TP 真阳性 TN FP FN
TP、True Positive 真阳性:预测为正,实际也为正
FP、False Positive 假阳性:预测为正,实际为负
FN、False Negative 假阴性:预测与负、实际为正
TN、True Negative 真阴性:预测为负、实际也为负。
也就是说,预测和实际一致则为真,预测和实际不一致则为假;如果预测出来是“正”的,则为“阳”,预测结果为 “负”,则为“阴”。
先看一个简单的二分类问题。
比如说总共有100个人,其中60个人患有疾病,40个人是健康的。我们的要找出里面的病人,我们一共找出了50个我们认为的病人,其中40个确实是病人,另外10个是健康的。因为我们要找的是“病人”,所以“病人”就是正样本,健康者是负样本。
TP 正阳性:预测为正,实际也为正,也就是预测为病人,实际也是病人的样本数目,一个有40个。
FP 假阳性:预测为正,实际为负。预测为病人,但实际不是病人,有10个。
FN 假阴性:预测为负,实际为正。我们找出了50个我们认为的病人,剩下50个我们认为都是健康的,但事实上剩下的50个人中,有20个是病人。这20个就是假阴性的数目。预测没病,但实际有病。
TN 真阴性:预测为负,实际为负。我们找出了50个我们认为的病人,剩下的50个就是我们预测的负样本,但是这50个样本中,有20个是病人,剩下30个才是负样本,所以真阴性的个数为30。
以一个等级预测为例。
为了叙述方便,下文一律把“等级”称呼为“类”。
首先看真阳性TP:预测为正,实际也为正。也就说本来属于哪个类,预测出来还是那个类,就叫真阳性。对于类A而言,实际是A,预测出来还是A的有“璇璇”和“晓慧”,那么类A的真阳性TP的个数为2。对于类B而言,实际是B,预测出来还是B(说成预测出来是B,实际也是B是等效的)的只有“鱼丸”,所以类B的真阳性个数为1。同理对于类C而言,真阳性TP的个数也为1。
接下来看假阳性FP:预测为正,实际为负。就是说你预测她是某个类,但她实际不是,就是假阳性。对于类A而言,假阳性FP的个数为1,就是“奶副”,预测为A,但实际是B。对于类B而言,假阳性FP的个数为3,分别是“美君”,“梦慧”和“甜甜”,预测出来是B,但实际都不是。类C的假阳性FP个数为1,是“菌菇”,预测出来是C,但实际是B。
假阴性FN,预测与负、实际为正。就是预测不是,但是实际是,还是结合前边的表格来看。对于类A而言,假阴性就是预测不是A,但实际是A(注意和假阳性的区别),这样的情况有“美君”,预测为B(负),但实际是A(正)所以类A假阴性的个数为1。类B假阴性的,有“奶副”和“菌菇”,所以为2。同理类C的假阴性个数为2,分别是“甜甜”和“梦慧”。
至于真阴性在多分类中的应用我暂时还没搞明白。不过无碍,毕竟还是用Precision和Recall比较多,而这两个用不到真阴性。
TP 真阳性 TN FP FN的更多相关文章
- 从TP、FP、TN、FN到ROC曲线、miss rate、行人检测评估
从TP.FP.TN.FN到ROC曲线.miss rate.行人检测评估 想要在行人检测的evaluation阶段要计算miss rate,就要从True Positive Rate讲起:miss ra ...
- 目标检测的评价指标(TP、TN、FP、FN、Precision、Recall、IoU、mIoU、AP、mAP)
1. TP TN FP FN GroundTruth 预测结果 TP(True Positives): 真的正样本 = [正样本 被正确分为 正样本] TN(True Negatives): 真的 ...
- ROC曲线、PR曲线
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...
- [zz] ROC曲线
wiki https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF 在信号检测理论中,接收者操作特征曲线(receiver operating chara ...
- 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy 真实结果 1 ...
- 分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP.True Positive 真阳性:预测为正,实 ...
- ROC 曲线简要解释
阳性 (P, positive)阴性 (N, Negative)真阳性 (TP, true positive):正确的肯定.又称:命中 (hit)真阴性 (TN, true negative):正确的 ...
- MATLAB聚类有效性评价指标(外部 成对度量)
MATLAB聚类有效性评价指标(外部 成对度量) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多内容,请看:MATLAB: Clustering ...
- 二分类问题F-score评判指标(转载)
分类模型的评价指标Fscore 小书匠深度学习 分类方法常用的评估模型好坏的方法. 0.预设问题 假设我现在有一个二分类任务,是分析100封邮件是否是垃圾邮件,其中不是垃圾邮件有65封,是垃圾邮件有3 ...
随机推荐
- tabel 选中行变色和取当前选中行值等问题
先把代码贴出来 $("#tableId tbody tr").mousedown(function () { $('#tableId tr').each(funct ...
- Numpy知识(三)
ndarray的花式索引. 正负数索引,正数就是从0开始的下标正向寻找,负数是-1开始的负向寻找. arr[[1,5,2,6],[0,3,1,2]]:拿取arr[1,0],arr[5,3],arr[2 ...
- workerman 平滑重启
<?phpuse Workerman\Worker;use Workerman\Lib\Timer; require_once '../../web/Workerman/Autoloader.p ...
- Mat取行或列
Mat dst; dst = FeatureValue.colRange(j,j+).clone(); 直接使用Mat类中成员函数,方法,colRange对应的是列,rowRange对应的是行,从第j ...
- 与元素类型 "item" 相关联的 "name" 属性值不能包含 '<' 字符。
Android Studio 打包时,报错: 与元素类型 "item" 相关联的 "name" 属性值不能包含 '<' 字符. 这个问题自己百度也没有发现 ...
- @Scope 注解
@Scope(value=ConfigurableBeanFactory.SCOPE_PROTOTYPE)这个是说在每次注入的时候回自动创建一个新的bean实例 @Scope(value=Config ...
- Java虚拟机1
Java内存区域 程序计数器(Program Counter Register):记录当前线程所执行字节码的行号指示器.字节码解释器工作时,判断是循环,分支,跳转,异常等条件,然后更新这个计数器的值来 ...
- wordpress smtp发送邮件
准备工作 进入qq邮箱 点击设置 邮箱设置 账户选项 下拉 找到POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务 开启 点击开启后发送短信内容 配置邮件客户端 到 ...
- selector的例子
例子1 文件名:sl_rounded_rectangle_button_picture.xml 文件内容: <?xml version="1.0" encoding=&quo ...
- c++ 面试题(汇总)
1,extern 关键字作用: http://www.cnblogs.com/lzjsky/archive/2010/11/24/1886686.html 2,static 关键字作用: https: ...