LDA(线性判别分析,Python实现)
源代码:
#-*- coding: UTF-8 -*-
from numpy import *
import numpy
def lda(c1,c2):
#c1 第一类样本,每行是一个样本
#c2 第二类样本,每行是一个样本 #计算各类样本的均值和所有样本均值
m1=mean(c1,axis=0)#第一类样本均值
m2=mean(c2,axis=0)#第二类样本均值
c=vstack((c1,c2))#所有样本
m=mean(c,axis=0)#所有样本的均值 #计算类内离散度矩阵Sw
n1=c1.shape[0]#第一类样本数
print(n1);
n2=c2.shape[0]#第二类样本数
#求第一类样本的散列矩阵s1
s1=0
for i in range(0,n1):
s1=s1+(c1[i,:]-m1).T*(c1[i,:]-m1)
#求第二类样本的散列矩阵s2
s2=0
for i in range(0,n2):
s2=s2+(c2[i,:]-m2).T*(c2[i,:]-m2)
Sw=(n1*s1+n2*s2)/(n1+n2)
#计算类间离散度矩阵Sb
Sb=(n1*(m-m1).T*(m-m1)+n2*(m-m2).T*(m-m2))/(n1+n2)
#求最大特征值对应的特征向量
eigvalue,eigvector=linalg.eig(mat(Sw).I*Sb)#特征值和特征向量
indexVec=numpy.argsort(-eigvalue)#对eigvalue从大到小排序,返回索引
nLargestIndex=indexVec[:1] #取出最大的特征值的索引
W=eigvector[:,nLargestIndex] #取出最大的特征值对应的特征向量
return W
LDA(线性判别分析,Python实现)的更多相关文章
- LDA线性判别分析原理及python应用(葡萄酒案例分析)
目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LD ...
- LDA线性判别分析
LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的 ...
- PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...
- LDA 线性判别分析
LDA, Linear Discriminant Analysis,线性判别分析.注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别. 1.引入 上文介绍的PC ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
- 运用sklearn进行线性判别分析(LDA)代码实现
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...
- LDA(Linear discriminate analysis)线性判别分析
LDA 线性判别分析与Fisher算法完全不同 LDA是基于最小错误贝叶斯决策规则的. 在EMG肌电信号分析中,... 未完待续:.....
- 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...
- 线性判别分析 LDA
点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...
随机推荐
- node-webkit学习(3)Native UI API概览
node-webkit学习(3)Native UI API概览 文/玄魂 目录 node-webkit学习(3)Native UI API概览 前言 3.1 Native UI api概览 Exte ...
- WPF Slider滑动条的颜色修改
效果如下: 鄙人虽然开发WPF有些时间,但之前一直是一些简单Template和Style改改之类的工作,并没有深入研究过.此次为了完成工作,首先也是网上搜了半天,没有找到合适的代码直接拷贝(搜索能力待 ...
- cad2015卸载/安装失败/如何彻底卸载清除干净cad2015注册表和文件的方法
cad2015提示安装未完成,某些产品无法安装该怎样解决呢?一些朋友在win7或者win10系统下安装cad2015失败提示cad2015安装未完成,某些产品无法安装,也有时候想重新安装cad2015 ...
- Spring MVC前后端数据交互总结
控制器 作为控制器,大体的作用是作为V端的数据接收并且交给M层去处理,然后负责管理V的跳转.SpringMVC的作用不外乎就是如此,主要分为:接收表单或者请求的值,定义过滤器,跳转页面:其实就是ser ...
- Oracle SQL Developer连接报错以及链接oracle的sqlplus出现协议适配器错误
之前用的好好的Oracle SQL Developer,不知道是不是匆忙关闭软件啥东西没保存或是删了什么东西,今天突然用不了的. 大清早的,打开Oracle SQL Developer,就给我一个惊喜 ...
- 并发上下文控制包Context
Context,是golang用来控制并发流程的库,它能方便的将主控程序的停止信号传递到goroutinue中,从而实现一键中止关联goroutinue的执行,除此之外,它还能将外部变量通过Value ...
- 【xsy2504】farm 容斥原理
题目大意:给你三个数$n,m,s$,满足$n,m,s≤10^{18}$且最大质因数均不大于$10^6$. 问你存在多少个整数$k$,满足$0≤k≤m$,且$(k,0)$,$(0,n)$,$(x,y)$ ...
- WebForm - cookie赋值乱码问题
cookie的值为中文时候,取cookie的值会出现乱码 解决办法:存取cookie时候先解码和编码 存cookie,进行编码: cookie.Value = HttpUtility.UrlEncod ...
- asp.net core 系列之用户认证(1)-给项目添加 Identity
对于没有包含认证(authentication),的项目,你可以使用基架(scaffolder)把 Identity的程序集包加入到项目中,并且选择性的添加Identity的代码进行生成. 虽然基架已 ...
- 关于如何食用Xcode——用mac的小蒟蒻
前言QwQ 对于一只用Mac的小蒟蒻,没有Dev_c++简直太难受了,用在线IDE写代码又没法保存,那么我们怎么办呢? 好在App Store里有这个好东西 所以我们今天来介绍一下 “如何使用Xcod ...