一、人工神经网络库

Pytorch ———— 让计算机  确定神经网络的结构 +   实现人工神经元 + 搭建人工神经网络 + 选择合适的权重

(1)确定人工神经网络的 结构:

只需要告诉Pytorch 神经网络 中的神经元个数   每个神经元是怎么样的【比如 输入 输出 非线性函数】  各神经元的连接方式

(2)确定人工神经元的权重值:

只需要告诉 pytorch 什么样的权重值比较好

(3)处理 输入和输出:

pytorch 可以和其他库合作,协助处理神经网络的 输入和输出

二、利用Pytorch 实现 迷你AlphaGo

可以把X[0] X[1]  X[2]  三个输入看作  当前局势,把y看作下一步要下的棋,把g看作胜率函数,以找到 最优的 下棋策略

我们不需要知道 从X到 y的 关系的形式,只需要搭建神经网络

不需要告诉神经元的权重都是多少,pytorch 可以帮助找到 神经元的权重

步骤:

只需要把下方 四段代码,前后连接,即可

(1)定义神经网络

from torch.nn import Linear,ReLU,Sequential
net = Sequential(
Linear(3,8), #第一层 8 个神经元
ReLU(),# 第一层神经元的 非线性函数是max(·,0)
Linear(8,8), #第二层 8个神经元
ReLU(),#非线性函数是max(·,0)
Linear(8,1), #第三层 1 个神经元
)

这个序列中 有三个Linear 类实例 ————>  说明这个 神经网络 有3层

第一个Linear 类实例 用参数 3 8 来构造,这两个参数 说明每个神经元都有 3个输入,一共有8 个神经元

这个序列中有两个ReLU 类实例,也就是说,其中两个层的神经元的非线性函数都是 max(·,0)

这个神经网络最后一层没有使用非线性函数 max(·,0)  ————原因: 我们希望将要制作的 应用既能输出≥0 的结果,也能输出<0 的结果

(2)测试函数g()

def g(x,y):
x0,x1,x2 = x[:,0] ** 0,x[:,1] ** 1,x[:,2] ** 2
y0 = y[:,0]
return (x0 + x1 + x2) * y0 - y0 * y0 - x0 * x1 * x2

(3)寻找合适的神经元的权重

import torch
from torch.optim import Adam
optimizer = Adam(net.parameters())
for step in range(1000):
optimizer.zero_grad()
x = torch.randn(1000,3)
y = net(x)
outputs = g(x,y)
loss = -torch.sum(outputs)
loss.backward()
optimizer.step()
if step % 100 == 0:
print('第{}次迭代损失 = {}'.format(step,loss))
第0次迭代损失 = -533.194091796875
第100次迭代损失 = -1128.9976806640625
第200次迭代损失 = -1480.289794921875
第300次迭代损失 = -1731.8543701171875
第400次迭代损失 = -1867.0120849609375
第500次迭代损失 = -1623.46728515625
第600次迭代损失 = -1827.7152099609375
第700次迭代损失 = -1860.97216796875
第800次迭代损失 = -1743.3468017578125
第900次迭代损失 = -1622.2218017578125

代码在第三行构造了优化器 optimizer,这个优化器每次可以改良所有权重值,但是这个改良不是一步到位的

需要让优化器反复循环很多次【后面缩进的语句都是要循环的内容】  ————   每次需要告诉优化器 每次改良的依据是什么

通过 optimizer.step()  完成权重的改良

完成后,就训练好了神经网络

(4)测试神经网络的性能

#生成测试数据
x_test = torch.randn(2,3)
print('测试输入:{}'.format(x_test))
# 查看神经网络的计算结果
y_test = net(x_test)
print ('人工神经网络计算结果: {}'.format(y_test))
print('g的值:{}'.format(g(x_test,y_test)))
#根据理论,计算参考答案
def argmax_g(x):
x0,x1,x2 = x[:,0] ** 0,x[:,1] ** 1,x[:,2] ** 2
return 0.5 * (x0 + x1 + x2)[:, None]
yref_test = argmax_g(x_test)
print('理论最优值:{}'.format(yref_test))
print('g的值:{}'.format(g(x_test,yref_test)))
测试输入:tensor([[ 0.1865,  1.4210,  1.1290],
[-0.2137, 0.1621, 0.9952]])
人工神经网络计算结果: tensor([[1.9692],
[1.0804]], grad_fn=<AddmmBackward>)
g的值:tensor([1.5885, 0.9977], grad_fn=<SubBackward0>)
理论最优值:tensor([[1.8479],
[1.0762]])
g的值:tensor([1.6032, 0.9977])

可以断定,我们的神经网络 已经正确地 输出了最优结果

由于 验证代码的输入是随机确定的。所以每次运行的输入和输出都不一样

Pytorch笔记 (2) 初识Pytorch的更多相关文章

  1. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  2. [Pytorch] pytorch笔记 <三>

    pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...

  3. [Pytorch] pytorch笔记 <二>

    pytorch笔记2 用到的关于plt的总结 plt.scatter scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, ...

  4. [Pytorch] pytorch笔记 <一>

    pytorch笔记 - torchvision.utils.make_grid torchvision.utils.make_grid torchvision.utils.make_grid(tens ...

  5. [PyTorch 学习笔记] 1.1 PyTorch 简介与安装

    PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深 ...

  6. Storm学习笔记 - Storm初识

    Storm学习笔记 - Storm初识 1. Strom是什么? Storm是一个开源免费的分布式计算框架,可以实时处理大量的数据流. 2. Storm的特点 高性能,低延迟. 分布式:可解决数据量大 ...

  7. LevelDB学习笔记 (1):初识LevelDB

    LevelDB学习笔记 (1):初识LevelDB 1. 写在前面 1.1 什么是levelDB LevelDB就是一个由Google开源的高效的单机Key/Value存储系统,该存储系统提供了Key ...

  8. PyTorch学习笔记之初识word_embedding

    import torch import torch.nn as nn from torch.autograd import Variable word2id = {'hello': 0, 'world ...

  9. 【转载】 pytorch笔记:06)requires_grad和volatile

    原文地址: https://blog.csdn.net/jiangpeng59/article/details/80667335 作者:PJ-Javis 来源:CSDN --------------- ...

随机推荐

  1. noi.ac NA531 【神树和物品】

    今日成就:本来以为过了这题,然后被mcfx发现写假并针对地造了一组hack数据之后FST了. 复杂度什么的咱也不会证,咱也不会卡,被hack之后只能FST. 是个决策单调性sb题,但是由于太菜不怎么会 ...

  2. 我说CMMI之三:CMMI的构件--转载

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dylanren/article/deta ...

  3. JavaScript面向对象OOM 2(JavaScript 创建对象的工厂模式和构造函数模式)

      在创建对象的时候,使用对象字面量和 new Object() 构造函数的方式创建一个对象是最简单最方便的方式.但是凡是处于初级阶段的事物都会不可避免的存在一个问题,没有普适性,意思就是说我要为世界 ...

  4. repo 回退当前分支下所有仓库到指定日期前的最新代码版本

    回退命令: repo forall -c 'commitID=git log --before "2019-11-24 23:59" -1 --pretty=format:&quo ...

  5. 创建Windows任务计划定时调用网页执行任务(通过Windows PowerShell的Invoke-WebRequest实现)

    前言:项目中使用RoadFlow工作流,设置超时自动提交功能,自动提交功能已有现成的网页可实现(http://127.0.0.1/WorkFlowRun/AutoSubmit),现需创建Windows ...

  6. Spring整合MongoDB(转)

    1.认识Spring Data MongoDB 之前还的确不知道Spring连集成Nosql的东西都实现了,还以为自己又要手动封装一个操作MongoDB的API呢,结果就发现了Spring Data ...

  7. C# 写日志的方法

    public void WriteLog(string msg)        {            string filePath = AppDomain.CurrentDomain.BaseD ...

  8. 修改 mvc webapi 默认返回 json 格式

    web api 默认的已 xml 格式返回数据 现在开发一般都是以 json 格式为主 下面配置让 webapi 默认返回 json ,在需要返回 xml 时只需要加一个查询参数 datatype=x ...

  9. List集合的三个实现类比较

    1. ArrayList 底层数据结构是数组,查询快,增删慢 线程不安全,效率高 2. Vector 底层数据结构是数组,查询快,增删慢 线程安全,效率低 3. LinkedList 底层数据结构是链 ...

  10. linux下简单好用的端口映射转发工具rinetd

    linux下简单好用的工具rinetd,实现端口映射/转发/重定向官网地址http://www.boutell.com/rinetd 软件下载wget http://www.boutell.com/r ...