题目链接:POJ 3805

Problem Description

Numbers of black and white points are placed on a plane. Let’s imagine that a straight line of infinite length is drawn on the plane. When the line does not meet any of the points, the line divides these points into two groups. If the division by such a line results in one group consisting only of black points and the other consisting only of white points, we say that theline “separates black and white points”.

Let’s see examples in Figure 3. In the leftmost example, you can easily find that the black and white points can be perfectly separated by the dashed line according to their colors. In the remaining three examples, there exists no such straight line that gives such a separation.

In this problem, given a set of points with their colors and positions, you are requested to decide whether there exists a straight line that separates black and white points.

Input

The input is a sequence of datasets, each of which is formatted as follows.

  n m
x1 y1
.
.
.
xn yn
xn+1 yn+1
.
.
.
xn+m yn+m

The first line contains two positive integers separated by a single space; n is the number of black points, and m is the number of white points. They are less than or equal to 100. Then n + m lines representing the coordinates of points follow. Each line contains two integers xi and yi separated by a space, where (xi, yi) represents the x-coordinate and the y-coordinate of the i-th point. The color of the i-th point is black for 1 <= i <= n, and is white for n + 1 <= i <= n + m.

All the points have integral x- and y-coordinate values between 0 and 10000 inclusive. You can also assume that no two points have the same position.

The end of the input is indicated by a line containing two zeros separated by a space.

Output

For each dataset, output “YES” if there exists a line satisfying the condition. If not, output “NO”. In either case, print it in one line for each input dataset.

Sample Input

3 3
100 700
200 200
600 600
500 100
500 300
800 500
3 3
100 300
400 600
400 100
600 400
500 900
300 300
3 4
300 300
500 300
400 600
100 100
200 900
500 900
800 100
1 2
300 300
100 100
500 500
1 1
100 100
200 100
2 2
0 0
500 700
1000 1400
1500 2100
2 2
0 0
1000 1000
1000 0
0 1000
3 3
0 100
4999 102
10000 103
5001 102
10000 102
0 101
3 3
100 100
200 100
100 200
0 0
400 0
0 400
3 3
2813 1640
2583 2892
2967 1916
541 3562
9298 3686
7443 7921
0 0

Sample Output

YES
NO
NO
NO
YES
YES
NO
NO
NO
YES

Solution

题意

平面上有一些白点和黑点,问是否存在一条直线能把两类点分开。

题解

模板题。

详见 UVA 10256 The Great Divide (判断凸包相交)

Code

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
double length() {
return sqrt(x * x + y * y);
}
}; typedef Point Vector; double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) < -eps)
return true;
return false;
} double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
} typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
} int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
} // 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
} // 判断线段相交
bool Intersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1),
c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
} // 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
} void solve(Polygon s1, Polygon s2) {
int c1 = s1.size(), c2 = s2.size();
for(int i = 0; i < c1; ++i) {
if(isPointInPolygon(s1[i], s2)) {
printf("NO\n");
return;
}
}
for(int i = 0; i < c2; ++i) {
if(isPointInPolygon(s2[i], s1)) {
printf("NO\n");
return;
}
}
for (int i = 0; i < c1; i++) {
for (int j = 0; j < c2; j++) {
if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) {
printf("NO\n");
return;
}
}
}
printf("YES\n");
} int main() {
int n, m;
while (cin >> n >> m) {
if(n == 0 && m == 0) break;
Polygon s1, s2;
for (int i = 0; i < n; ++i) {
double x1, x2;
scanf("%lf%lf", &x1, &x2);
s1.push_back(Point(x1, x2));
}
for (int i = 0; i < m; ++i) {
double x1, x2;
scanf("%lf%lf", &x1, &x2);
s2.push_back(Point(x1, x2));
}
if(s1.size()) s1 = Andrew(s1);
if(s2.size()) s2 = Andrew(s2);
solve(s1, s2);
}
return 0;
}

POJ 3805 Separate Points (判断凸包相交)的更多相关文章

  1. HDU 6590 Code (判断凸包相交)

    2019 杭电多校 1 1013 题目链接:HDU 6590 比赛链接:2019 Multi-University Training Contest 1 Problem Description Aft ...

  2. POJ 3449 Geometric Shapes 判断多边形相交

    题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...

  3. UVa 10256 - The Great Divide 判断凸包相交

    模板敲错了于是WA了好几遍…… 判断由红点和蓝点分别组成的两个凸包是否相离,是输出Yes,否输出No. 训练指南上的分析: 1.任取红凸包上的一条线段和蓝凸包上的一条线段,判断二者是否相交.如果相交( ...

  4. POJ 2653 Pick-up sticks (判断线段相交)

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10330   Accepted: 3833 D ...

  5. [poj] 1066 Treasure Hunt || 判断直线相交

    原题 在金字塔内有一个宝藏p(x,y),现在要取出这个宝藏. 在金字塔内有许多墙,为了进入宝藏所在的房间必须把墙炸开,但是炸墙只能炸每个房间墙的中点. 求将宝藏运出城堡所需要的最小炸墙数. 判断点和直 ...

  6. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  7. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  8. UVALive7461 - Separating Pebbles 判断两个凸包相交

    //UVALive7461 - Separating Pebbles 判断两个凸包相交 #include <bits/stdc++.h> using namespace std; #def ...

  9. POJ 2826 An Easy Problem? 判断线段相交

    POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客 下面三种情况比较特殊,特别是第三种 G++怎么交都是WA,同样的代码C++A了 #include <io ...

随机推荐

  1. PHP 换行处理

    换行符 unix系列用 \n windows系列用 \r\n mac用 \r PHP中可以用PHP_EOL来替代,以提高代码的源代码级可移植性 如: <?php echo PHP_EOL; // ...

  2. .net Core 在 CentOS7下,报The type initializer for 'Gdip' threw an exception.异常

    .net Core允许在 Centos7 上,使用 System.Draw.Common类库时,报以下错误: "Class":"System.TypeInitializa ...

  3. POJ 2254 Globetrotter (计算几何 - 球面最短距离)

    题目链接:POJ 2254 Description As a member of an ACM programming team you'll soon find yourself always tr ...

  4. shell 字符串匹配变量(只取数字或者取固定字符串)

    var1=abc3559   #想要获得3559 操作: var1_key=`echo $var1 | tr -cd "[0-9]"` https://www.cnblogs.co ...

  5. 【模板】fread读入优化 & fwrite输出优化

    #include <iostream> #include <cstdio> #include <cctype> #define SIZE (1 << 2 ...

  6. springboot整合netty,多种启动netty的方式,展现bean得多种启动方法

    首先讲解下,spring中初始化加载问题: 很多时候,我们自己写的线程池,还有bean对象,还有其他的服务类,都可以通过,相关注解进行交给spring去管理,那么我们如何让nettyserver初始化 ...

  7. MySQL锁机制浅析

    MySQL使用了3种锁机制 行级锁,开销大,加锁慢,会出现死锁,发生锁冲突的概率最高,并发度也最高 表级锁,开销小,加锁快,不会出现死锁,发生锁冲突的概率最低,并发度最低 页级锁,开销和加锁时间界于表 ...

  8. Javascript高级程序设计--读书笔记之理解原型对象

    先上一段代码和关系图 function Person(){} Person.prototype.name = "Nic" Person.prototype.age = 22 Per ...

  9. Python 基础 4-1 字典入门

    引言 字典 是Python 内置的一种数据结构,它便于语义化表达一些结构数据,字典是开发中常用的一种数据结构 字典介绍 字典使用花括号 {} 或 dict 来创建,字典是可以嵌套使用的 字典是成对出现 ...

  10. shell script 二 判断符号【】 shift 偏移量 if then fi

    判断符号[]类似于test.但是[]有通配符及正则表达式,为了区分,利用[]来做判断时,前后都需要加空格来区分.又一个坑 [ -z "$HOME" ];echo $? 例: 1 r ...