POJ 3805 Separate Points (判断凸包相交)
题目链接:POJ 3805
Problem Description
Numbers of black and white points are placed on a plane. Let’s imagine that a straight line of infinite length is drawn on the plane. When the line does not meet any of the points, the line divides these points into two groups. If the division by such a line results in one group consisting only of black points and the other consisting only of white points, we say that theline “separates black and white points”.
Let’s see examples in Figure 3. In the leftmost example, you can easily find that the black and white points can be perfectly separated by the dashed line according to their colors. In the remaining three examples, there exists no such straight line that gives such a separation.
In this problem, given a set of points with their colors and positions, you are requested to decide whether there exists a straight line that separates black and white points.
Input
The input is a sequence of datasets, each of which is formatted as follows.
n m
x1 y1
.
.
.
xn yn
xn+1 yn+1
.
.
.
xn+m yn+m
The first line contains two positive integers separated by a single space; n is the number of black points, and m is the number of white points. They are less than or equal to 100. Then n + m lines representing the coordinates of points follow. Each line contains two integers xi and yi separated by a space, where (xi, yi) represents the x-coordinate and the y-coordinate of the i-th point. The color of the i-th point is black for 1 <= i <= n, and is white for n + 1 <= i <= n + m.
All the points have integral x- and y-coordinate values between 0 and 10000 inclusive. You can also assume that no two points have the same position.
The end of the input is indicated by a line containing two zeros separated by a space.
Output
For each dataset, output “YES” if there exists a line satisfying the condition. If not, output “NO”. In either case, print it in one line for each input dataset.
Sample Input
3 3
100 700
200 200
600 600
500 100
500 300
800 500
3 3
100 300
400 600
400 100
600 400
500 900
300 300
3 4
300 300
500 300
400 600
100 100
200 900
500 900
800 100
1 2
300 300
100 100
500 500
1 1
100 100
200 100
2 2
0 0
500 700
1000 1400
1500 2100
2 2
0 0
1000 1000
1000 0
0 1000
3 3
0 100
4999 102
10000 103
5001 102
10000 102
0 101
3 3
100 100
200 100
100 200
0 0
400 0
0 400
3 3
2813 1640
2583 2892
2967 1916
541 3562
9298 3686
7443 7921
0 0
Sample Output
YES
NO
NO
NO
YES
YES
NO
NO
NO
YES
Solution
题意
平面上有一些白点和黑点,问是否存在一条直线能把两类点分开。
题解
模板题。
详见 UVA 10256 The Great Divide (判断凸包相交)
Code
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
double length() {
return sqrt(x * x + y * y);
}
};
typedef Point Vector;
double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}
double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}
bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) < -eps)
return true;
return false;
}
double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
}
int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}
// 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
}
// 判断线段相交
bool Intersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1),
c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
// 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
}
void solve(Polygon s1, Polygon s2) {
int c1 = s1.size(), c2 = s2.size();
for(int i = 0; i < c1; ++i) {
if(isPointInPolygon(s1[i], s2)) {
printf("NO\n");
return;
}
}
for(int i = 0; i < c2; ++i) {
if(isPointInPolygon(s2[i], s1)) {
printf("NO\n");
return;
}
}
for (int i = 0; i < c1; i++) {
for (int j = 0; j < c2; j++) {
if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) {
printf("NO\n");
return;
}
}
}
printf("YES\n");
}
int main() {
int n, m;
while (cin >> n >> m) {
if(n == 0 && m == 0) break;
Polygon s1, s2;
for (int i = 0; i < n; ++i) {
double x1, x2;
scanf("%lf%lf", &x1, &x2);
s1.push_back(Point(x1, x2));
}
for (int i = 0; i < m; ++i) {
double x1, x2;
scanf("%lf%lf", &x1, &x2);
s2.push_back(Point(x1, x2));
}
if(s1.size()) s1 = Andrew(s1);
if(s2.size()) s2 = Andrew(s2);
solve(s1, s2);
}
return 0;
}
POJ 3805 Separate Points (判断凸包相交)的更多相关文章
- HDU 6590 Code (判断凸包相交)
2019 杭电多校 1 1013 题目链接:HDU 6590 比赛链接:2019 Multi-University Training Contest 1 Problem Description Aft ...
- POJ 3449 Geometric Shapes 判断多边形相交
题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...
- UVa 10256 - The Great Divide 判断凸包相交
模板敲错了于是WA了好几遍…… 判断由红点和蓝点分别组成的两个凸包是否相离,是输出Yes,否输出No. 训练指南上的分析: 1.任取红凸包上的一条线段和蓝凸包上的一条线段,判断二者是否相交.如果相交( ...
- POJ 2653 Pick-up sticks (判断线段相交)
Pick-up sticks Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10330 Accepted: 3833 D ...
- [poj] 1066 Treasure Hunt || 判断直线相交
原题 在金字塔内有一个宝藏p(x,y),现在要取出这个宝藏. 在金字塔内有许多墙,为了进入宝藏所在的房间必须把墙炸开,但是炸墙只能炸每个房间墙的中点. 求将宝藏运出城堡所需要的最小炸墙数. 判断点和直 ...
- POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)
Geometric Shapes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1243 Accepted: 524 D ...
- POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Acc ...
- UVALive7461 - Separating Pebbles 判断两个凸包相交
//UVALive7461 - Separating Pebbles 判断两个凸包相交 #include <bits/stdc++.h> using namespace std; #def ...
- POJ 2826 An Easy Problem? 判断线段相交
POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客 下面三种情况比较特殊,特别是第三种 G++怎么交都是WA,同样的代码C++A了 #include <io ...
随机推荐
- python字符串比较大小
zfill函数 xs = ['] print (sorted(xs))
- Centos6下实现Nginx+Tomcat实现负载均衡及监控
在性能测试过程中,我们可能会关注很多指标,比如CPU.IO.网络.磁盘等,通过这些指标大致可以判断哪个环节遇到了性能瓶颈,但是当这些指标无法判断出性能瓶颈时,我们可能就需要对一些中间件进行监控,比如N ...
- python中输入多个数字(代码实现)
不多说,直接上代码: list1 = [] #定义一个空列表 str1 = input("请输入数值,用空格隔开:") # list2 = str1.split(" &q ...
- spring data jpa 关联设计
MAP关联实体 // @ElementCollection @OneToMany(cascade = {CascadeType.ALL})// @JoinColumn(name = "the ...
- 高级UI晋升之自定义View实战(六)
更多Android高级架构进阶视频学习请点击:https://space.bilibili.com/474380680本篇文章将从Android 自定义属性动画&Camera动画来介绍自定义V ...
- 标准模板库(STL)学习探究之Multimap容器
C++ Multimaps和maps很相似,但是MultiMaps允许重复的元素.(具体用法请参考map容器) 函数列表: begin() 返回指向第一个元素的迭代器 cle ...
- C# 线程池的使用 终止线程池中的队列
C#的线程池使用起来还是非常简单的,这里记录一下. 根据http://blog.csdn.net/chen_zw/article/details/7939834里的描述这里记录一下C#线程池的特点 一 ...
- C# 连接Excel,获取表格数据,获取多个sheet中的数据,获取多个sheet名
/// <summary> /// 获取Excel内容. /// </summary> /// <param name="sheetName"> ...
- redis Set相关命令
- 每天一个Linux常用命令 命令
指令名称 : chmod 使用权限 : 所有使用者 使用方式 :chmod 777 /root 第一个7指文件所属用户,第二个7指文件所属用户的用户组,第三个7指其他用户 说明 : Linux/Uni ...