【Gcd】
【题目描述】
有 n 个正整数 x1~xn,初始时状态均为未选。有 m 个操作,每个操作给定一个编号 i,将 xi 的选取状态取反。每次操作后,你需要求出选取的数中有多少个互质的无序数对。
【输入数据】
第一行两个整数 n,m。第二行 n 个整数 x1~xn。接下来 m 行每行一个整数。
【输出数据】
m 行,每行一个整数表示答案。
【样例输入】
4 5 1 2 3 4 1 2 3 4 1
【样例输出】
0 1 3 5 2
【数据范围】
对于 20%的数据,n,m<=1000。对于另外 30%的数据,xi<=100。对于 100%的数据,n,m<=200000,xi<=500000,1<=i<=n。
分析:
对带有询问修改的问题我们可以先想出无询问无修改的问题解决方法,然后将解法组织成易于修改和回答询问的形式。
那么对于这道题,无修改无询问则是:给出n个数,求出n个数中互质的无序数对个数。
让我们考虑互质的本质——没有大于1的公因子,即GCD(a,b)==1。这样的数学题我们清楚地知道一一枚举是没有好结果的,通常情况下这类问题可以朝两大方向思考:组合数与容斥原理。
由于本题不存在方案数、概率等的计算,因此我们尝尝容斥原理的味道。
既然企图使用容斥,那么定几个表示有关联数组是很有必要的:
·f(i)表示GCD为i的 #include<stdio.h>
#define ll long long
#define go(i,a,b) for(int i=a;i<=b;i++)
;
int n,m,a[N],I,x,d,Mob[N];
ll s[N],g[N],f[N],ans;bool get[N];
struct Sieve
{
int prime[N],t;bool no[N];
void Mobius_Sieve()
{
Mob[]=;
go(i,,){;
go(j,,t){)break;
Mob[i*prime[j]]=i%prime[j]?-Mob[i]:;
no[i*prime[j]]=;)break;}}
}
}Tool;
int main()
{
Tool.Mobius_Sieve();
scanf("%d%d",&n,&m);
go(i,,n)scanf("%d",a+i);
while(m--)
{
scanf("%d",&I);x=a[I];
d=()?:-;
go(i,,x)&&i*i<=x)
{
s[i]+=d;if(i!=x/i)
s[x/i]+=d;
ans-=Mob[i]*g[i];if(i!=x/i)
ans-=Mob[x/i]*g[x/i];
g[i]=s[i]*(s[i]-)/;if(i!=x/i)
g[x/i]=s[x/i]*(s[x/i]-)/;
ans+=Mob[i]*g[i];if(i!=x/i)
ans+=Mob[x/i]*g[x/i];
}
else if(i*i>x)break;
printf("%lld\n",ans);
}
;
}//Paul_Guderian
我常常在河边呆呆的幻想,
做着一个孩子的白日梦,
想象未来有许多颜色。————汪峰《我在长大》
【Gcd】的更多相关文章
- 【gcd】 最大公约数
int gcd(int a,int b) { int r; ) { r=a%b; a=b; b=r; } return a; }
- upc组队赛1 不存在的泳池【GCD】
不存在的泳池 题目描述 小w是云南中医学院的同学,有一天他看到了学校的百度百科介绍: 截止到2014年5月,云南中医学院图书馆纸本藏书74.8457万册,纸质期刊388种,馆藏线装古籍图书1.8万册, ...
- 【GCD】AtCoder Grand Contest 018 A - Getting Difference
从大到小排序,相邻两项作差,求gcd,如果K是gcd的倍数并且K<=max{a(i)},必然有解,否则无解. 可以自己手画画证明. #include<cstdio> #include ...
- 【gcd】辗转相除法
#include<stdio.h> int gcd(int a, int b) { int c; while(b) { c = a % b; a = b; b = c; } return ...
- 辗转相除法求最大公约数和最小公倍数【gcd】
要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } ...
- 【数学】XMU 1597 GCD
题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1597 题目大意: 求(am-bm, an-bn),结果取模1000000007,a,b ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
- 【BZOJ2818】Gcd(莫比乌斯反演)
[BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Ou ...
随机推荐
- NumPy简介
NumPy是什么? NumPy(Numerrical Python 的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然的使用数组.NumPy包含很多实用的数学函数,涵盖线性代数运 ...
- win7下,使用django运行django-admin.py无法创建网站
安装django的步骤: 1.安装python,选择默认安装在c盘即可.设置环境变量path,值添加python的安装路径. 2.下载ez_setup.py,下载地址:http://peak.tele ...
- Codeforces 240 F. TorCoder
F. TorCoder time limit per test 3 seconds memory limit per test 256 megabytes input input.txt output ...
- NoSQL简介
相信大家也多多少少了解过一些数据库,最常用的当属MySQL了,当然也这是关系型数据库的代表了 常见的关系型数据库有:MySQL.SQLServer.Oracle 而数据库也有另一个流派-----NoS ...
- TF中conv2d和kernel_initializer方法
conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...
- AngularJS1.X学习笔记13-动画和触摸
本文主要涉及了ngAnimation和ngTouch模块,自由男人讲的比较少,估计要用的时候还要更加系统的学习一下. 一.安装 没错,就是酱紫. 二.玩玩动画 <!DOCTYPE html> ...
- VMware-vCenter-Server-Appliance VCSA升级步骤
1.下载ZIP升级文件并解压 2.打开HFS,把解压后的文件夹拖到"Virtual File System"下,在弹出的对话框中点击"Virtual folder&quo ...
- Spring Security 入门(3-10)Spring Security 的四种使用方式
原文链接: http://www.360doc.com/content/14/0724/17/18637323_396779659.shtml 下面是作者的一个问题处理
- python常用运算符
1. / 浮点除法,就算分子分母都是int类型,也返回float类型,比如我们用4/2,返回2.0 2. // 整数除法,根据分子分母的不同组合,返回的值有差异. 正数//正数,取整,比如5//3,返 ...
- ASP.NET MVC5 Forms登陆+权限控制(控制到Action)
一.Forms认证流程 请先参考如下网址: http://www.cnblogs.com/fish-li/archive/2012/04/15/2450571.html 本文主要介绍使用自定义的身份认 ...