Description

你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。

你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。

Input

第一行两个数分别表示n和m。

接下来n行,每行m个字符,每个字符都会是’.’或者’*’,其中’.’代表房间,’*’代表柱子。

Output

一行一个整数,表示合法的方案数 Mod 10^9

Sample Input

3 3
...
...
.*.

Sample Output

15

HINT

对于前100%的数据,n,m<=9

图的生成树计数用Maxtrix-Tree定理

答案就是基尔霍夫Kirchhoff矩阵的行列和

详细的知识自行百度

直接计算复杂度很高

但可以转化为上三角,这样行列和就是对角线的积

因为求行列和有一些性质,于是我们可以通过高斯消元构造

性质.1  互换矩阵的两行(列),行列式变号。

性质.2  如果矩阵有两行(列)完全相同,则行列式为 0

性质.3  如果矩阵的某一行(列)中的所有元素都乘以同一个数k,新行列式的值等于原行列式的值乘上数k。

性质.4  如果矩阵有两行(列)成比例(比例系数k),则行列式的值为 0

性质.5  如果把矩阵的某一行(列)加上另一行(列)的k倍,则行列式的值不变。

证明见ZYYS

但是取模不能出现实数

于是采用辗转相除法,如果要使b为0

那么使得(a,b)=>(b,a%b),直到为0

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int S,a[][],Mod=1e9,ans,n,m,id[][];
char s[][];
int guass()
{int i,j,k;
S--;
for (i=;i<=S;i++)
{
for (j=;j<=S;j++)
{
a[i][j]=(a[i][j]+Mod)%Mod;
}
}
ans=;
for (i=;i<=S;i++)
{
for (j=i+;j<=S;j++)
while (a[j][i])
{
int t=a[i][i]/a[j][i];
for (k=i;k<=S;k++)
{
a[i][k]=(a[i][k]-1ll*t*a[j][k]%Mod+Mod)%Mod;
swap(a[i][k],a[j][k]);
}
ans*=-;
}
ans=1ll*ans*a[i][i]%Mod;;
}
return (ans+Mod)%Mod;
}
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=m+;i++)
s[][i]='*',s[n+][i]='*';
for (i=;i<=n;i++)
{
scanf("%s",s[i]+);
s[i][]=s[i][m+]='*';
}
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
if (s[i][j]=='.')
{
id[i][j]=++S;
if (s[i-][j]=='.')
{
a[id[i-][j]][id[i][j]]=;
a[id[i][j]][id[i-][j]]=;
}
if (s[i][j-]=='.')
{
a[id[i][j-]][id[i][j]]=;
a[id[i][j]][id[i][j-]]=;
}
}
}
for (i=;i<=S;i++)
{
for (j=;j<=S;j++)
{
if (i!=j&&a[i][j])
a[i][i]++;
}
for (j=;j<=S;j++)
if (i!=j) a[i][j]=-a[i][j];
}
printf("%d\n",guass());
}

[HEOI2015]小Z的房间的更多相关文章

  1. bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 98  Solved: 29[Submit][Status] ...

  2. [HEOI2015]小Z的房间 && [CQOI2018]社交网络

    今天看了一下矩阵树定理,然后学了一下\(O(n ^ 3)\)的方法求行列式. 哦对了,所有的证明我都没看-- 这位大佬讲的好呀: [学习笔记]高斯消元.行列式.Matrix-Tree 矩阵树定理 关于 ...

  3. 【bzoj4031】[HEOI2015]小Z的房间 解题报告

    [bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含\(n*m\)个格子的格状矩形,每个格子是一个房 ...

  4. 【BZOJ 4031】 4031: [HEOI2015]小Z的房间 (Matrix-Tree Theorem)

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1089  Solved: 533 Description ...

  5. BZOJ 4031: [HEOI2015]小Z的房间 高斯消元 MartixTree定理 辗转相除法

    4031: [HEOI2015]小Z的房间 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个 ...

  6. 【bzoj4031】[HEOI2015]小Z的房间 Matrix-Tree定理+高斯消元

    [bzoj4031][HEOI2015]小Z的房间 2015年4月30日3,0302 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的 ...

  7. 【bzoj4031】[HEOI2015]小Z的房间 && 【bzoj4894】天赋 (矩阵树定理)

    来两道矩阵树模板: T1:[bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形 ...

  8. 【刷题】BZOJ 4031 [HEOI2015]小Z的房间

    Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. ...

  9. P4111 [HEOI2015]小Z的房间 生成树计数

    这个题是生成树计数的裸题,中间构造基尔霍夫矩阵,然后构成行列式,再用高斯消元就行了.这里高斯消元有一些区别,交换两行行列式的值变号,且消元只能将一行的数 * k 之后加到别的行上. 剩下就没啥了... ...

  10. bzoj4031 [HEOI2015]小Z的房间

    Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. ...

随机推荐

  1. vue小白快速入门

    一.vue是什么 Vue 是一套用于构建用户界面的渐进式框架. 压缩后仅有17kb 二.vue环境搭建 你直接下载并用 <script> 标签引入,Vue 会被注册为一个全局变量. 但在用 ...

  2. JavaScript(第二十二天)【动态加载js和css】

    学习要点: 1.元素位置 2.动态脚本 3.动态样式 本章主要讲解上一章剩余的获取位置的DOM方法.动态加载脚本和样式.   一.元素位置 上一章已经通过几组属性可以获取元素所需的位置,那么这节课补充 ...

  3. oralce数据库常用到的一些sql命令(加字段注释,修改数据之类)

    最近开始接触oralce,整理了一下最近使用 pl/sql 常用到的一些sql命令 1.修改表中的数据 编写查询语句及条件,然后加上"FOR UPDATE","FOR U ...

  4. DML数据操作语言之增加,删除,更新

    1.数据的增加 数据的增加要用到insert语句  ,基本格式是: insert into <表名> (列名1,列名2,列名3,......) values (值1,值2,值3,..... ...

  5. Linux下关闭Tomcat残留线程

    ps -ef | grep tomcat kill -9 {pid}

  6. HAOI 2012 高速公路

    https://www.luogu.org/problem/show?pid=2221 题目描述 Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这 ...

  7. 一句话了解JAVA与大数据之间的关系

    大数据无疑是目前IT领域的最受关注的热词之一.几乎凡事都要挂上点大数据,否则就显得你OUT了.如果再找一个可以跟大数据并驾齐驱的IT热词,JAVA无疑是跟大数据并驾齐驱的一个词语.很多人在提到大数据的 ...

  8. iis / asp.net 使用 .config 和 .xml 文件的区别

    由于在项目中有同学使用后缀为 .xml 的文件作为配置文件,而配置文件中有一些敏感信息被记录,如接口地址,Token,甚至还有数据库连接字符串. 以前都没想过为何微软会使用.config 的后缀在作为 ...

  9. 关于TomCat上传文件中文名乱码的问题

    最近在学习TomCat文件上传这一部分,由于文件上传必须要三个条件: 1.表单提交方式必须为Post 2.表单中需要有<input type="file">元素,还需要 ...

  10. js正则表达语法

    /* *通过量词可以设置一个内容出现的次数 *量词只对它前边的一个内容起作用.所以在作用多个时需要用小括号()来向计算机说明这是一个整体. *-{n}代表正好出现n次. *-{m,n}出现了m-n次. ...