题目大意:n个人,k种假面,每人戴一种,戴第i种的可以看见第i+1种,戴第k种的可以看见第1种,给出m条关系表示一个人可以看到另一个人,问k可能的最大值和最小值。(n<=100,000,m<=1,000,000)

思路:染色,若点i颜色为ci,就把点i能到的点染成ci+1,能到点i的点染成ci-1,如果染之前已经染过了,设要染的点为j,则cj和ci+1(-1)模k同余,若cj不等于ci+1(-1),则k必然为|ci+1(-1)-cj|的因子,取gcd即可。若没有出现这种情况,最大答案为各连通块最长链的和。(稍微卡了个常卡到rank1 233)

#include<cstdio>
#include<algorithm>
using namespace std;
char B[<<],*S=B,C;int X;
inline int read()
{
while((C=*S++)<''||C>'');
for(X=C-'';(C=*S++)>=''&&C<='';)X=(X<<)+(X<<)+C-'';
return X;
}
#define r register int
#define MN 100000
#define MM 1000000
struct edge{int nx,t;}e[MM*+];
int h[MN+],rh[MN+],en,c[MN+],ans,mn,mx;
inline void ins(int*h,int x,int y){e[++en]=(edge){h[x],y};h[x]=en;}
inline int gcd(int x,int y){return y?gcd(y,x%y):x;}
inline int z(int x){return x<?-x:x;}
void dfs(int x)
{
for(r i=h[x];i;i=e[i].nx)
c[e[i].t]?ans=gcd(ans,z(c[e[i].t]-c[x]-)):
(mx=max(mx,c[e[i].t]=c[x]+),dfs(e[i].t),);
for(r i=rh[x];i;i=e[i].nx)
c[e[i].t]?ans=gcd(ans,z(c[e[i].t]-c[x]+)):
(mn=min(mn,c[e[i].t]=c[x]-),dfs(e[i].t),);
}
int main()
{
fread(B,,<<,stdin);
int n,m,x,y,i,s=;
n=read();m=read();
while(m--)x=read(),ins(h,x,y=read()),ins(rh,y,x);
for(i=;i<=n;++i)if(!c[i])c[i]=mn=mx=n,dfs(i),s+=mx-mn+;
if(ans)
{
if(ans<)return *puts("-1 -1");
for(i=;i<=ans;++i)if(ans%i==)break;
return *printf("%d %d\n",ans,i);
}
printf("%d %d\n",s<?-:s,s<?-:);
}

[BZOJ]1064: [Noi2008]假面舞会的更多相关文章

  1. [bzoj 1064][NOI2008]假面舞会(dfs判断环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1064 分析: 如果a看到b,则a->b 那么: 1.如果图中有环,则说明这个环的 ...

  2. BZOJ 1064: [Noi2008]假面舞会(dfs + 图论好题!)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1064 题意: 思路: 考虑以下几种情况: ①无环并且是树: 无环的话就是树结构了,树结构的话想一下就 ...

  3. bzoj 1064 noi2008 假面舞会题解

    莫名其妙的变成了我们的noip互测题... 其实这题思想还是比较简单的,只是分类不好分而已 其实就是一个dfs的事 首先,非常明显,原题目中的所有关系可以抽象成一个图(这是...显而易见的吧...) ...

  4. 【BZOJ】1064: [Noi2008]假面舞会(判环+gcd+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1064 表示想到某一种情况就不敢写下去了.... 就是找环的gcd...好可怕.. 于是膜拜了题解.. ...

  5. 1064: [Noi2008]假面舞会 - BZOJ

    Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...

  6. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  7. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

  8. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  9. 【洛谷】1477:[NOI2008]假面舞会【图论】

    P1477 [NOI2008]假面舞会 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具 ...

随机推荐

  1. Beta冲刺Day4

    项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...

  2. Scala 集合入门

    1. 数组 1.1 定长数组 scala.Array 是定长的可变的索引型集合, JVM 中, Scala 的 Array 是以 Java 数组方式实现. String 对应 java.lang.St ...

  3. Linux CentOS7.0 (04)systemctl vs chkconfig、service

    CentOS 7.0中已经没有service命令,而是启用了systemctl服务器命令 systemctl 是系统服务管理器命令,它实际上将 service 和 chkconfig 这两个命令组合到 ...

  4. redis入门(03)redis的配置

    一.配置文件 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf.你可以通过 CONFIG 命令查看或设置配置项. 二.查看修改 1.查看配置 1.1.vi redis ...

  5. Nginx负载均衡(架构之路)

    [前言] 在大型网站中,负载均衡是有想当必要的.尤其是在同一时间访问量比较大的大型网站,例如网上商城,新闻等CMS系统,为了减轻单个服务器的处理压力,我们引进了负载均衡这一个概念,将一个服务器的压力分 ...

  6. tensorflow让程序学习到函数y = ax + b中a和b的值

    今天我们通过tensorflow来实现一个简单的小例子: 假如我定义一个一元一次函数y = 0.1x + 0.3,然后我在程序中定义两个变量 Weight 和 biases 怎么让我的这两个变量自己学 ...

  7. linux添加硬盘分区挂载教程

    基本步骤:分区--格式化--挂载--写入文件 1.首先用fdisk -l命令查看添加的硬盘名称,可以看到sdb为新增的硬盘 [root@oracle ~]# fdisk -l Disk /dev/sd ...

  8. Web开发笔记

    jquery ui draggable clone之后不会克隆draggable功能,要重新设置

  9. Struts(二十四):短路验证&重写实现转换验证失败时短路&非字段验证

    短路验证: 若对一个字段使用多个验证器,默认情况下会执行所有的验证.若希望前面的验证器没有通过,后面的验证器就不再执行,可以使用短路验证. 1.如下拦截器,如果输入字符串,提交表单后,默认是会出现三个 ...

  10. hdu1005 Number Sequence---找循环节

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1005题目大意: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + ...