姊妹篇:

深入浅出KNN算法(一) 原理介绍

上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法。

一.Skelarn KNN参数概述

要使用sklearnKNN算法进行分类,我们需要先了解sklearnKNN算法的一些基本参数,那么这节就先介绍这些内容吧。

def KNeighborsClassifier(n_neighbors = 5,
weights='uniform',
algorithm = '',
leaf_size = '30',
p = 2,
metric = 'minkowski',
metric_params = None,
n_jobs = None
) - n_neighbors:这个值就是指 KNN 中的 “K”了。前面说到过,通过调整 K 值,算法会有不同的效果。
- weights(权重):最普遍的 KNN 算法无论距离如何,权重都一样,但有时候我们想搞点特殊化,比如距离更近的点让它更加重要。这时候就需要 weight 这个参数了,这个参数有三个可选参数的值,决定了如何分配权重。参数选项如下:
• 'uniform':不管远近权重都一样,就是最普通的 KNN 算法的形式。
• 'distance':权重和距离成反比,距离预测目标越近具有越高的权重。
• 自定义函数:自定义一个函数,根据输入的坐标值返回对应的权重,达到自定义权重的目的。
- algorithm:在 sklearn 中,要构建 KNN 模型有三种构建方式,1. 暴力法,就是直接计算距离存储比较的那种放松。2. 使用 kd 树构建 KNN 模型 3. 使用球树构建。 其中暴力法适合数据较小的方式,否则效率会比较低。如果数据量比较大一般会选择用 KD 树构建 KNN 模型,而当 KD 树也比较慢的时候,则可以试试球树来构建 KNN。参数选项如下:
• 'brute' :蛮力实现
• 'kd_tree':KD 树实现 KNN
• 'ball_tree':球树实现 KNN
• 'auto': 默认参数,自动选择合适的方法构建模型
不过当数据较小或比较稀疏时,无论选择哪个最后都会使用 'brute' - leaf_size:如果是选择蛮力实现,那么这个值是可以忽略的,当使用KD树或球树,它就是是停止建子树的叶子节点数量的阈值。默认30,但如果数据量增多这个参数需要增大,否则速度过慢不说,还容易过拟合。
- p:和metric结合使用的,当metric参数是"minkowski"的时候,p=1为曼哈顿距离, p=2为欧式距离。默认为p=2。
- metric:指定距离度量方法,一般都是使用欧式距离。
• 'euclidean' :欧式距离
• 'manhattan':曼哈顿距离
• 'chebyshev':切比雪夫距离
• 'minkowski': 闵可夫斯基距离,默认参数
- n_jobs:指定多少个CPU进行运算,默认是-1,也就是全部都算。

二. KNN代码实例

KNN算法算是机器学习里面最简单的算法之一了,我们来sklearn官方给出的例子,来看看KNN应该怎样使用吧:

数据集使用的是著名的鸢尾花数据集,用KNN来对它做分类。我们先看看鸢尾花长的啥样。

上面这个就是鸢尾花了,这个鸢尾花数据集主要包含了鸢尾花的花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性(特征),以及鸢尾花卉属于『Setosa,Versicolour,Virginica』三个种类中的哪一类(这三种都长什么样我也不知道)。

在使用KNN算法之前,我们要先决定K的值是多少,要选出最优的K值,可以使用sklearn中的交叉验证方法,代码如下:

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier #读取鸢尾花数据集
iris = load_iris()
x = iris.data
y = iris.target
k_range = range(1, 31)
k_error = []
#循环,取k=1到k=31,查看误差效果
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
#cv参数决定数据集划分比例,这里是按照5:1划分训练集和测试集
scores = cross_val_score(knn, x, y, cv=6, scoring='accuracy')
k_error.append(1 - scores.mean()) #画图,x轴为k值,y值为误差值
plt.plot(k_range, k_error)
plt.xlabel('Value of K for KNN')
plt.ylabel('Error')
plt.show()

运行后,我们可以得到下面这样的图:



有了这张图,我们就能明显看出K值取多少的时候误差最小,这里明显是K=11最好。当然在实际问题中,如果数据集比较大,那为减少训练时间,K的取值范围可以缩小。

有了K值我们就能运行KNN算法了,具体代码如下:

import matplotlib.pyplot as plt
from numpy import *
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets n_neighbors = 11 # 导入一些要玩的数据
iris = datasets.load_iris()
x = iris.data[:, :2] # 我们只采用前两个feature,方便画图在二维平面显示
y = iris.target h = .02 # 网格中的步长 # 创建彩色的图
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) #weights是KNN模型中的一个参数,上述参数介绍中有介绍,这里绘制两种权重参数下KNN的效果图
for weights in ['uniform', 'distance']:
# 创建了一个knn分类器的实例,并拟合数据。
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(x, y) # 绘制决策边界。为此,我们将为每个分配一个颜色
# 来绘制网格中的点 [x_min, x_max]x[y_min, y_max].
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # 将结果放入一个彩色图中
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # 绘制训练点
plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights)) plt.show()

KNN和Kmeans

前面说到过,KNN和Kmeans听起来有些像,但本质是有区别的,这里我们就顺便说一下两者的异同吧。

相同:

  1. K值都是重点
  2. 都需要计算平面中点的距离

相异:

Knn和Kmeans的核心都是通过计算空间中点的距离来实现目的,只是他们的目的是不同的。KNN的最终目的是分类,而Kmeans的目的是给所有距离相近的点分配一个类别,也就是聚类。

简单说,就是画一个圈,KNN是让进来圈子里的人变成自己人,Kmeans是让原本在圈内的人归成一类人。

以上

深入浅出KNN算法(二) sklearn KNN实践的更多相关文章

  1. 具体knn算法概念参考knn代码python实现

    具体knn算法概念参考knn代码python实现上面是参考<机器学习实战>的代码,和knn的思想 # _*_ encoding=utf8 _*_ import numpy as npimp ...

  2. 深入浅出KNN算法(一) KNN算法原理

    一.KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学 ...

  3. 机器学习之KNN算法

    1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属 ...

  4. 机器学习-K近邻(KNN)算法详解

    一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...

  5. 机器学习(二)-kNN手写数字识别

    一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...

  6. 机器学习【三】k-近邻(kNN)算法

    一.kNN算法概述 kNN算法是用来分类的,其依据测量不同特征值之间的距离,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似).其精度高,对异常值不敏 ...

  7. knn算法之预测数字

    训练算法并对算法的准确值准确率进行估计 #导入相应模块 import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%mat ...

  8. 机器学习回顾篇(6):KNN算法

    1 引言 本文将从算法原理出发,展开介绍KNN算法,并结合机器学习中常用的Iris数据集通过代码实例演示KNN算法用法和实现. 2 算法原理 KNN(kNN,k-NearestNeighbor)算法, ...

  9. KNN算法介绍及源码实现

    一.KNN算法介绍 邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它 ...

  10. 利用Python实现kNN算法

    邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了.虽然很简单,但在解决特定问题时却能发挥很好的效果.因此,学 ...

随机推荐

  1. hashCode()方法以及集合中Set的一些总结

    一.前言 本篇文章没有什么主题,就是一些零散点的总结.周末没事看了几道蚂蚁金服的面试题,其中有好几道都是特别简单的,基础性的题目,就是我们平时用到的,但是发现要是完全说出来还是有一些不清楚的地方,所以 ...

  2. 在阿里云服务器windows server2012r iis上部署.net网站

    先说一堆废话:之前在阿里云上租了一个服务器,也配置了相关的环境,然后准备把自己手上的一个小网站挂上去,就按照我的上篇博客记载的方法把发布好的网站发布到服务器的iis上,结果发布之后死活访问不了,始终显 ...

  3. 设计模式之迭代器模式——Java语言描述

    迭代器模式是Java和.NET编程环境中非常常用的设计模式.这种模式用于顺序访问集合对象的元素,不需要知道集合对象的底层表示 介绍 意图 提供一种方法顺序访问一个聚合对象中各个元素,无需暴露该对象的内 ...

  4. 一个经典的 HTTP协议详解

    1引言 HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展.目前在WWW中使用的是HTTP/1 ...

  5. 景观指数分析 - 初识FragStats4.2

    引 言 FragStats景观格局分析软件 ,简单扼要地说就是景观指数的集成分析环境,不用自己编写相关的算法和读/取文件的开发.根据了解,FragStats(Fragment Statistic)官方 ...

  6. 【error】Gradle sync failed: Unable to start the daemon process.【已解决】

    ---恢复内容开始--- 在克隆GIT项目后,Android Studio 报错: Gradle sync failed: Unable to start the daemon process. Th ...

  7. 使用PowerShell实时查看日志文件的变化

    开发过程中,会有好多的日志输出到日志文件中了,每次看日志都需要打开,log文件,觉得麻烦 找了个省事的方法 使用PowerShell 使用命令:Get-Content D:\www\webapp1\L ...

  8. 搭建环境-Monkeyrunner-自动化测试工具

    这篇博客帮助挺大,我补充部分,帮助同样的小白哈哈,侵删 https://www.cnblogs.com/lynn-li/p/5885001.html 1.前期准备 需要安装:JDK,SDK,pytho ...

  9. centos7.3 kubernetes/k8s 1.10 离线安装 --已验证

    本文介绍在centos7.3使用kubeadm快速离线安装kubernetes 1.10. 采用单master,单node(可以多node),占用资源较少,方便在笔记本或学习环境快速部署,不适用于生产 ...

  10. AMBARI Blueprint 使用文档

    Introduction Notable JIRAs API Resources and Syntax Blueprint Usage Overview Step 0: Prepare Ambari ...