10、压缩变换(程序设计)

小明最近在研究压缩算法。

他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比。
然而,要使数值很小是一个挑战。

最近,小明需要压缩一些正整数的序列,这些序列的特点是,后面出现的数字很大可能是刚出现过不久的数字。对于这种特殊的序列,小明准备对序列做一个变换来减小数字的值。

变换的过程如下:
从左到右枚举序列,每枚举到一个数字,如果这个数字没有出现过,刚将数字变换成它的相反数,如果数字出现过,则看它在原序列中最后的一次出现后面(且在当前数前面)出现了几种数字,用这个种类数替换原来的数字。

比如,序列(a1, a2, a3, a4, a5)=(1, 2, 2, 1, 2)在变换过程为:
a1: 1未出现过,所以a1变为-1;
a2: 2未出现过,所以a2变为-2;
a3: 2出现过,最后一次为原序列的a2,在a2后、a3前有0种数字,所以a3变为0;
a4: 1出现过,最后一次为原序列的a1,在a1后、a4前有1种数字,所以a4变为1;
a5: 2出现过,最后一次为原序列的a3,在a3后、a5前有1种数字,所以a5变为1。
现在,给出原序列,请问,按这种变换规则变换后的序列是什么。

输入格式:
输入第一行包含一个整数n,表示序列的长度。
第二行包含n个正整数,表示输入序列。

输出格式:
输出一行,包含n个数,表示变换后的序列。

例如,输入:
5
1 2 2 1 2

程序应该输出:
-1 -2 0 1 1

再例如,输入:
12
1 1 2 3 2 3 1 2 2 2 3 1

程序应该输出:
-1 0 -2 -3 1 1 2 2 0 0 2 2

数据规模与约定
对于30%的数据,n<=1000;
对于50%的数据,n<=30000;
对于100%的数据,1 <=n<=100000,1<=ai<=10^9

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms

public class Test10 {

    public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int length = scanner.nextInt();
int[] A = new int[length];
for (int i = 0; i < length; i++) {
A[i] = scanner.nextInt();
}
HashSet<Integer> hashSet = new HashSet<Integer>();
for (int i = 0; i < length; i++) {
if (hashSet.contains(A[i])) {
//临时集合
HashSet<Integer> tempset = new HashSet<Integer>();
for (int j = i; j >= 0; j--) {
if (tempset.contains(A[j])&&A[j]==A[i]) {
//查看临时集合队列中是否有需要的数据
System.out.printf("%d ", tempset.size()-1);
//而且有这个数据的话 应该让集合条数 减一
break;
} else {
tempset.add(A[j]);
//不含这个数据 就增加到临时队列中去
}
}
} else {
// 之前没有出现过 就增加其中
System.out.printf("%d ", -A[i]);
hashSet.add(A[i]);
}
}
} }

第六届蓝桥杯B组java最后一题的更多相关文章

  1. 第六届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.隔行变色 隔行变色 Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式. 小明设计的样式为:第1行蓝色, ...

  2. 第六届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.三角形面积 题目描述 如图1所示.图中的所有小方格面积都是1. 那么,图中的三角形面积应该是多少呢? 请填写三角形的面积.不要填写任何 ...

  3. 第六届蓝桥杯JavaA组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.熊怪吃核桃 题目描述 森林里有一只熊怪,很爱吃核桃.不过它有个习惯,每次都把找到的核桃分成相等的两份,吃掉一份,留一份.如果不能等分, ...

  4. 第十届蓝桥杯JavaB组省赛真题

    试题 A: 组队 本题总分:5 分 [问题描述] 作为篮球队教练,你需要从以下名单中选出 1 号位至 5 号位各一名球员, 组成球队的首发阵容. 每位球员担任 1 号位至 5 号位时的评分如下表所示. ...

  5. 第十届蓝桥杯JavaC组省赛真题

    试题 A: 求和 本题总分:5 分 [问题描述] 小明对数位中含有 2.0.1.9 的数字很感兴趣,在 1 到 40 中这样的数包 括 1.2.9.10 至 32.39 和 40,共 28 个,他们的 ...

  6. 第六届蓝桥杯JavaB组国(决)赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.分机号 X老板脾气古怪,他们公司的电话分机号都是3位数,老板规定,所有号码必须是降序排列,且不能有重复的数位.比如: 751,520, ...

  7. 第六届蓝桥杯JavaA组国(决)赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.胡同门牌号 小明家住在一条胡同里.胡同里的门牌号都是连续的正整数,由于历史原因,最小的号码并不是从1开始排的. 有一天小明突然发现了有 ...

  8. 第九届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.第几天 题目描述 2000年的1月1日,是那一年的第1天. 那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数 ...

  9. 第九届蓝桥杯JavaA组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.分数 题目描述 1/1 + 1/2 + 1/4 + 1/8 + 1/16 + - 每项是前一项的一半,如果一共有20项, 求这个和是多 ...

随机推荐

  1. Five nines

    Five nines, commonly taken to mean "99.999%", may refer to: 高可用  High availability of serv ...

  2. datanode启动不起来的各种原因

    一般在数据节点的log日志信息里能找到导致启动不起来的原因. 1.Namenode和Datanode的NamenodeID不一致 描述:一般在集群多次重新格式化HDFS之后,或者刚安装时会碰到.日志信 ...

  3. linux redis基础应用 主从服务器配置

    Redis基础应用 redis是一个开源的可基于内存可持久化的日志型,key-value数据库redis的存储分为内存存储,磁盘存储和log文件三部分配置文件中有三个参数对其进行配置 优势:和memc ...

  4. 使用串口下载vxworks映象的方法

    使用串口下载vxworks映象的方法 由于坛子里这方面的可行性文章比较少,不时有一些网友在询问这方面的问题,再加上通过这种方法可以调试网络驱动,所以我花了一点时间把整个下载过程试了一下. 1.配置co ...

  5. win10 更新系统更新补丁后无法启动处理办法

    win10无法启动不用怕!WinRE恢复环境轻松修复win10系统 Win10技术预览版发布至今,已经整整过去十天时间.经过这段时间的使用体验,小伙伴们有没有遇到一些问题,导致系统出错甚至无法启动呢? ...

  6. IP地址校验

    function validIp(fieldname,fielddesc){ var value = $.trim($("#key_"+fieldname).val()); var ...

  7. MongoDB添加用户验证

    Mongodb默认启动是不带认证,也没有账号,只要能连接上服务就可以对数据库进行各种操作,这样可不行.现在,我们得一步步开启使用用户和认证. 第一步,我们得定位到mongodb的安装目录.我本机的是C ...

  8. 由内搜推送思考Kafka 的原理

    刚入公司的两周多,对CDX项目有了进一步的认识和理解,在这基础上,也开始了解部门内部甚至公司提供的一些中间服务.CDX项目中涉及到的二方服务和三方服务很多,从之前写过的SSO,Auth,到三方图库的各 ...

  9. [Luogu3121][USACO15FEB]审查Censoring

    题面 sol 开一个栈记录依次经过的\(AC\)自动机上的节点编号以及这一次的字母,若匹配到一个串就直接弹掉栈顶的\(len\)个元素,\(len\)为匹配到的模式串长度.弹栈顶直接\(top-=le ...

  10. [UVAlive4297]First Knight

    题面在这里 题意 给定一个\(n\times m\)的格网,从\((1,1)\)出发,每一格\((i,j)\)往上下左右移动的概率已经给出,询问到达\((n,m)\)的期望步数 数据范围 \[n,m\ ...