Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row R and column C that align with all the following rules:

  1. Row R and column C both contain exactly N black pixels.
  2. For all rows that have a black pixel at column C, they should be exactly the same as row R

The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.

Example:

Input:
[['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'W', 'B', 'W', 'B', 'W']] N = 3
Output: 6
Explanation: All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3).
0 1 2 3 4 5 column index
0 [['W', 'B', 'W', 'B', 'B', 'W'],
1 ['W', 'B', 'W', 'B', 'B', 'W'],
2 ['W', 'B', 'W', 'B', 'B', 'W'],
3 ['W', 'W', 'B', 'W', 'B', 'W']]
row index Take 'B' at row R = 0 and column C = 1 as an example:
Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels.
Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.

Note:

    1. The range of width and height of the input 2D array is [1,200].

这道题是之前那道Lonely Pixel I的拓展,我开始以为这次要考虑到对角线的情况,可是这次题目却完全换了一种玩法。给了一个整数N,说对于均含有N个个黑像素的某行某列,如果该列中所有的黑像素所在的行都相同的话,该列的所有黑像素均为孤独的像素,让我们统计所有的这样的孤独的像素的个数。那么跟之前那题类似,我们还是要统计每一行每一列的黑像素的个数,而且由于条件二中要比较各行之间是否相等,如果一个字符一个字符的比较写起来比较麻烦,我们可以用个trick,把每行的字符连起来,形成一个字符串,然后直接比较两个字符串是否相等会简单很多。然后我们遍历每一行和每一列,如果某行和某列的黑像素刚好均为N,我们遍历该列的所有黑像素,如果其所在行均相等,则说明该列的所有黑像素均为孤独的像素,将个数加入结果res中,然后将该行的黑像素统计个数清零,以免重复运算,这样我们就可以求出所有的孤独的像素了,参见代码如下:

解法一:

class Solution {
public:
int findBlackPixel(vector<vector<char>>& picture, int N) {
if (picture.empty() || picture[].empty()) return ;
int m = picture.size(), n = picture[].size(), res = , k = ;
vector<int> rowCnt(m, ), colCnt(n, );
vector<string> rows(m, "");
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
rows[i].push_back(picture[i][j]);
if (picture[i][j] == 'B') {
++rowCnt[i];
++colCnt[j];
}
}
}
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
if (rowCnt[i] == N && colCnt[j] == N) {
for (k = ; k < m; ++k) {
if (picture[k][j] == 'B') {
if (rows[i] != rows[k]) break;
}
}
if (k == m) {
res += colCnt[j];
colCnt[j] = ;
}
}
}
}
return res;
}
};

看到论坛中的比较流行的解法是用哈希表来做的,建立黑像素出现个数为N的行和其出现次数之间的映射,然后我们就只需要统计每列的黑像素的个数,然后我们遍历哈希表,找到出现次数刚好为N的行,说明矩阵中有N个相同的该行,而且该行中的黑像素的个数也刚好为N个,那么第二个条件就已经满足了,我们只要再满足第一个条件就行了,我们在找黑像素为N个的列就行了,有几列就加几个N即可,参见代码如下:

解法二:

class Solution {
public:
int findBlackPixel(vector<vector<char>>& picture, int N) {
if (picture.empty() || picture[].empty()) return ;
int m = picture.size(), n = picture[].size(), res = ;
vector<int> colCnt(n, );
unordered_map<string, int> u;
for (int i = ; i < m; ++i) {
int cnt = ;
for (int j = ; j < n; ++j) {
if (picture[i][j] == 'B') {
++colCnt[j];
++cnt;
}
}
if (cnt == N) ++u[string(picture[i].begin(), picture[i].end())];
}
for (auto a : u) {
if (a.second != N) continue;
for (int i = ; i < n; ++i) {
res += (a.first[i] == 'B' && colCnt[i] == N) ? N : ;
}
}
return res;
}
};

类似题目:

Lonely Pixel I

参考资料:

https://discuss.leetcode.com/topic/81686/verbose-java-o-m-n-solution-hashmap/2

https://discuss.leetcode.com/topic/87164/a-c-solution-based-on-the-top-rated-issue

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Lonely Pixel II 孤独的像素之二的更多相关文章

  1. [LeetCode] 533. Lonely Pixel II 孤独的像素 II

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  2. [LeetCode] Lonely Pixel I 孤独的像素之一

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  3. [LeetCode] 531. Lonely Pixel I 孤独的像素 I

    Given a picture consisting of black and white pixels, find the number of black lonely pixels. The pi ...

  4. LeetCode 533. Lonely Pixel II (孤独的像素之二) $

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  5. LeetCode 533----Lonely Pixel II

    问题描述 Given a picture consisting of black and white pixels, and a positive integer N, find the number ...

  6. 533. Lonely Pixel II

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  7. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  8. [LeetCode] Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  9. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

随机推荐

  1. [luogu1168]中位数_优先队列

    中位数 题目大意:输出读入的前2*k+1个数的中位数.一共有n个数,按照读入顺序. 注释:$1\le n \le 10^9$. 想法:这是优先队列的一个应用qwq.我们弄两个堆.小根堆和大根堆,保证: ...

  2. jQuery学习笔记 .addClass()/.removeClass()简单学习

    使用jQuery或javaScript来动态改变页面中某个或部分元素的样式,为了实现这样的功能,我们往往都是使用jQuery或javaScript来控制HTML中DOM的类名(class)从而实现增加 ...

  3. 如何从零开始学习区块链技术——推荐从以太坊开发DApp开始

    很多人迷惑于区块链和以太坊,不知如何学习,本文简单说了一下学习的一些方法和资源. 一. 以太坊和区块链的关系 从区块链历史上来说,先诞生了比特币,当时并没有区块链这个技术和名词,然后业界从比特币中提取 ...

  4. Maven学习笔记一

    maven是apache下的一个开源项目,是纯java开发,并且只是用来管理java项目的. Maven好处 1.普通的传统项目,包含jar包,占用空间很大.而Maven项目不包含jar包,所以占用空 ...

  5. img之间的间隙问题

    前言:关于基线(base line),中线(middle line),行高(line height)的了解还是比较浅的,所以引用前辈的成果,稍带解释下 1)行高:两行文字之间"基线" ...

  6. Ubuntu16.04安装postgresql9.4及pgadmin3图形管理界面

    参考原文链接:http://www.cnblogs.com/sparkdev/p/5678874.html 安装前的检查 首先查看是否已经安装了旧版本: dpkg -l |grep postgresq ...

  7. IIS 错误代码

    错误码: 1.HTTP 1xx-信息提示 这些状态代码表示临时的响应.客户端在收到常规响应之前,应准备接收一个或多个1xx响应. 100-继续. 101-切换协议. 2xx-成功 这类状态代码表明服务 ...

  8. Swift - 使用导航条和导航条控制器来进行页面切换并传递数据

    转自:http://www.hangge.com/blog/cache/detail_586.html

  9. java8-Stream之数值流

    在Stream里元素都是对象,那么,当我们操作一个数字流的时候就不得不考虑一个问题,拆箱和装箱.虽然自动拆箱不需要我们处理,但依旧有隐含的成本在里面.Java8引入了3个原始类型特化流接口来解决这个问 ...

  10. MySQL InnoDB锁机制

    概述: 锁机制在程序中是最常用的机制之一,当一个程序需要多线程并行访问同一资源时,为了避免一致性问题,通常采用锁机制来处理.在数据库的操作中也有相同的问题,当两个线程同时对一条数据进行操作,为了保证数 ...