Going Home

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2829    Accepted Submission(s): 1423

Problem Description
On
a grid map there are n little men and n houses. In each unit time,
every little man can move one unit step, either horizontally, or
vertically, to an adjacent point. For each little man, you need to pay a
$1 travel fee for every step he moves, until he enters a house. The
task is complicated with the restriction that each house can accommodate
only one little man.

Your task is to compute the minimum amount
of money you need to pay in order to send these n little men into those
n different houses. The input is a map of the scenario, a '.' means an
empty space, an 'H' represents a house on that point, and am 'm'
indicates there is a little man on that point.

You
can think of each point on the grid map as a quite large square, so it
can hold n little men at the same time; also, it is okay if a little man
steps on a grid with a house without entering that house.

 
Input
There
are one or more test cases in the input. Each case starts with a line
giving two integers N and M, where N is the number of rows of the map,
and M is the number of columns. The rest of the input will be N lines
describing the map. You may assume both N and M are between 2 and 100,
inclusive. There will be the same number of 'H's and 'm's on the map;
and there will be at most 100 houses. Input will terminate with 0 0 for N
and M.
 
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
 
Sample Input
2 2
.m
H.
 
5 5
HH..m
.....
.....
.....
mm..H
 
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
 
0 0
 
Sample Output
2
10
28
 
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h> #define N 110
#define INF 99999999 int n, m;
char map[N][N]; //存储原始字符地图的
int ma[N][N]; //类似边表的可匹配存储
int lx[N], ly[N];
int vtx[N], vty[N];
int match[N];
int slack[N];
int cnt; int max(int a, int b)
{
return a>b?a:b;
}
int min(int a, int b)
{
return a>b?b:a;
} int hungary(int dd) //匈牙利算法
{
int i;
vtx[dd]=1;
for(i=0; i<cnt; i++)
{
if(vty[i])
continue;
else
{
if(lx[dd]+ly[i] == ma[dd][i] )
{
vty[i]=1; if(match[i]==-1 || hungary(match[i]) )
{
match[i] = dd;
return 1;
}
}
else
slack[i] = min( slack[i], lx[dd] + ly[i]-ma[dd][i] );
}
}
return 0;
} void km_match() //最大权匹配
{
int i, j;
int temp;
memset(lx, 0, sizeof(lx));
memset(ly, 0, sizeof(ly));
for(i=0; i<cnt; i++)
{
for(j=0; j<cnt; j++)
{
lx[i]=max(lx[i], ma[i][j] );
} //表示当前的i号人,去某一个房子的最大距离
}
for(i=0; i<cnt; i++)
{
for(j=0; j<cnt; j++)
{
slack[j]=INF; //初始无穷大
}
while(1)
{
memset(vtx, 0, sizeof(vtx));
memset(vty, 0, sizeof(vty));
if(hungary(i)) //匈牙利算法
break;
else
{
temp=INF;
for(j=0; j<cnt; j++)
{
if(!vty[j])
{
temp=min(temp, slack[j] );
}
}
for( j=0; j<cnt; j++ )
{
if( vtx[j] )
lx[j] -= temp;
if( vty[j] )
ly[j] += temp;
else
slack[j] -= temp;
}
}
}
}
} int main()
{
int i, j, k, ll;
int ci, cj;
int sum;
while(scanf("%d %d", &n, &m) && n!=0 && m!=0 )
{
memset(match, -1, sizeof(match ));//match数组初始 -1,记录父节点
cnt=0;
for(i=0; i<n; i++ )
{
scanf("%*c"); //每行先取一个回车换行
for(j=0; j<m; j++)
{
scanf("%c", & map[i][j] );
if(map[i][j] == 'm' ) //如果是个人
{
cnt++; //记录 人数, 建图时需要
}
}
}
//四层循环 前两层遍历map寻找m 内两层循环找h
ci=0;
cj=0;
for(i=0; i<n; i++)
{
for(j=0; j<m; j++)
{
if(map[i][j]=='m') //找到一个人
{
//找到人之后遍历map找 H
for(k=0; k<n; k++)
{
for(ll=0; ll<m; ll++)
{
if(map[k][ll]=='H')
{
ma[ci][cj++] = 100-(abs(k-i)+abs(ll-j));
//大数减边
}
}
}
ci++; //换到下一行存储
cj=0; //cj指针回到0位置
}
}
}
km_match(); //最大权匹配
sum=0;
for(i=0; i<cnt; i++)
{
sum+=ma[match[i]][i] ;
}
printf("%d\n", 100*cnt-sum );
}
return 0;
}
 
#include<iostream>
#include<cstring>
#include<climits>
#include<cstdio>
#include<algorithm>
#define N 110
using namespace std; char maps[N][N]; //存储原始字符地图的 int map[N][N]; //类似边表的可匹配存储 int lx[N], ly[N];
int slack[N];
int match[N];
bool visitx[N], visity[N];
int n; bool Hungary( int u ) //匹配
{
int i ;
visitx[u] = true;
for( i=0; i < n; ++i)
{
if(visity[i]==true )
continue;
else
{
if(lx[u] + ly[i] == map[u][i] )
{
visity[i] = true;
if(match[i] == -1 || Hungary(match[i]) )
{
match[i] = u;
return true;
}
}
else
slack[i] = min(slack[i], lx[u] + ly[i]-map[u][i] );
}
}
return false;
} void KM_perfect_match() //匈牙利算法
{
int temp;
memset(lx, 0, sizeof(lx)); // 清零??
memset(ly, 0, sizeof(ly)); // 清零?? for(int i=0; i<n; ++i)
for(int j=0; j<n; ++j)
lx[i] = max( lx[i], map[i][j] ); //表示当前的i号人,去某一个房子的最大距离 for(int i=0; i<n; ++i)
{
/*
我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。
在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成
原值与A[i]+B[j]-w[i,j]的较小值。
这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。
但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d。
*/
for(int j=0; j<n; ++j)
slack[j] = INT_MAX;
while(1)
{
memset(visitx, false, sizeof(visitx)); //清零
memset(visity, false, sizeof(visity)); //清零
if( Hungary(i) )
break;
else
{
temp = INT_MAX;
for(int j=0; j<n; ++j )
{
if(!visity[j])
{
temp = min(temp, slack[j]);
}
}
for(int j=0; j<n; ++j )
{
if( visitx[j] )
lx[j] -= temp;
if( visity[j] )
ly[j] += temp;
else
slack[j] -= temp;
}
}
}
}
} int main()
{
int row, col, ans, numi, numj;
while(scanf("%d %d", &row, &col) && (row + col) ) //行 列
{
n = ans = numi = numj = 0;
memset(match, -1, sizeof(match)); //match数组初始 -1
for(int i=0; i<row; ++i)
{
scanf("%*c");//取回车
for(int j=0; j<col; ++j)
{
scanf("%c", &maps[i][j]);
if(maps[i][j] == 'm')
n++; //记录 人数
}
}
//果然是四层循环啊,和预想的一样 for(int i=0; i<row; ++i) //建图
{
for(int j=0; j<col; ++j)
{ //如果当前的是: 人
if(maps[i][j] == 'm')
{ //暴力一遍整个map,
for(int k=0; k<row; ++k )
{
for(int l = 0; l < col; ++l)
{
if(maps[k][l] == 'H') // 如果当前找到了一所房子
{ //建图时的特殊处理(类似入栈, 不过这次入得是二维数组
map[numi][numj++] = 100 - (abs(k - i) + abs(l - j)); //大数减边
} //等同于给每个人开了一个一位数组
}
}
numi++ ; //当找到下一个人的时候, 二维数组挪到下一行
numj = 0 ; //位置指针归零
}
}
} KM_perfect_match(); //调用匈牙利算法 for(int i = 0; i < n; ++i )
{
ans = ans + map[match[i]][i];
}
printf("%d\n", 100 * n - ans) ;
}
return 0;
} ///////////////

HDU 1533 Going home的更多相关文章

  1. 【HDU 1533】 Going Home (KM)

    Going Home Problem Description On a grid map there are n little men and n houses. In each unit time, ...

  2. POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

    题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...

  3. HDU 1533 Going Home(KM完美匹配)

    HDU 1533 Going Home 题目链接 题意:就是一个H要相应一个m,使得总曼哈顿距离最小 思路:KM完美匹配,因为是要最小.所以边权建负数来处理就可以 代码: #include <c ...

  4. HDU 1533 最小费用最大流(模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 这道题直接用了模板 题意:要构建一个二分图,家对应人,连线的权值就是最短距离,求最小费用 要注意void ...

  5. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  6. Going Home HDU - 1533 费用流

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 给一个网格图,每两个点之间的匹配花费为其曼哈顿距离,问给每个的"$m$"匹配到一个&q ...

  7. HDU 1533

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 人和房子数量相同,每个人进房子,费用是人到房子的曼哈顿距离,求最小费用 可用最小费用最大流求解,建立虚拟的 ...

  8. 【hdu 1533】Going Home

    [链接]http://acm.hdu.edu.cn/showproblem.php?pid=1533 [题意] 一个N*M地图上有相同数量的字符H和字符m,m代表一个 人,H代表一个房子.人到房子的花 ...

  9. HDU 1533:Going Home(KM算法求二分图最小权匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 Going Home Problem Description   On a grid map there ...

  10. HDU 1533 & KM模板

    题意 求二分图最小完备匹配. SOL 建个图那么方便的事情是吧...然后边权都是正的(好像根边权也没什么关系),既然要求最小那么把边权取个相反数跑个KM就好了.. CODE: /*========== ...

随机推荐

  1. Java和C++ 比較

    总体差别 1. C/C++是直接执行在机器上(编译后为机器码),而java编译后产生*.class文件(字节码)是执行在java虚拟机上在(JVM),经过JVM解译(机器码)再放到真实机器上执行. J ...

  2. 请描述Java中的时间监听机制?

    1.时间监听涉及到三个组件:事件源.事件对象.事件监听器 2.当事件源上发生某个动作时,它会调用事件监听器的一个方法,并将事件对象穿进去,开发人员在监听器中通过事件对象,拿到事件源,从而对事件源进行操 ...

  3. java并发阻塞队列

    Java 并发编程利用 Condition 来实现阻塞队列 You are here:  开发&语言 - Java 文章 发布于 2017年06月26日  阅读 944 并发编程   什么是阻 ...

  4. httpClient实现

    1.实现功能 向关注了微信公众号的微信用户群发消息.(可以是所有的用户,也可以是提供了微信openid的微信用户集合) 2.基本步骤 前提: 已经有认证的公众号或者测试公众账号 发送消息步骤: 发送一 ...

  5. 再理解 as3.0接口

    As3.0 接口的理解与运用 1.把接口当作"类"来理解.你easy接受她. 我们看她的标准结构: package 包路径{ public interface 接口名称{ func ...

  6. 编程算法 - 二叉树的最低公共祖先 代码(C)

    二叉树的最低公共祖先 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 二叉树的最低公共祖先(lowest common ancestor), 首先先序遍 ...

  7. Android蓝牙通信具体解释

    蓝牙通信的大概过程例如以下: 1.首先开启蓝牙 2,搜索可用设备 3,创建蓝牙socket.获取输入输出流 4,读取和写入数据 5.断开连接关闭蓝牙 还要发送配对码发送进行推断! 以下是全部的源码:不 ...

  8. LNMP环境搭建(三:PHP)

    1.获取php源码 # cd /usr/local/src/ # wget http://cn2.php.net/get/php-7.0.15.tar.gz/from/this/mirror 2.解压 ...

  9. solr6.5的分词

    1.配置solr6.5自带中文分词.复制/usr/local/solr/contrib/analysis-extras/lucene-libs/lucene-analyzers-smartcn-6.5 ...

  10. data standardization

    import random import numpy as np l, num, gen_min_, gen_max_ = [], 100, 1, 200 l = [random.randint(ge ...