BZOJ4364:[IOI2014]Wall
浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=4364
似乎可以不用吉司机线段树的作法……因为只需要维护区间最大最小值,也只有区间取最大最小值操作,所以可以直接用普通的线段树延迟标记解决这道问题。只要把最大值标记和最小值标记之间的关系处理得当即可。
时间复杂度:\(O((n+m)logn)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=2e6+6,inf=1e9;
int n,m;
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct segmemt_tree {
int mx[maxn<<2],mn[maxn<<2];
int tagmx[maxn<<2],tagmn[maxn<<2];
void update(int p) {
mx[p]=max(mx[p<<1],mx[p<<1|1]);
mn[p]=min(mn[p<<1],mn[p<<1|1]);
}
void build(int p,int l,int r) {
tagmx[p]=-inf,tagmn[p]=inf;
if(l==r)return;
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
}
void Max_tag(int p,int v) {
mx[p]=max(mx[p],v),mn[p]=max(mn[p],v);
tagmx[p]=max(tagmx[p],v);tagmn[p]=max(tagmn[p],v);
}
void Min_tag(int p,int v) {
mx[p]=min(mx[p],v),mn[p]=min(mn[p],v);
tagmx[p]=min(tagmx[p],v),tagmn[p]=min(tagmn[p],v);
}
void push_down(int p) {
if(tagmx[p]!=-inf) {
Max_tag(p<<1,tagmx[p]);
Max_tag(p<<1|1,tagmx[p]);
tagmx[p]=-inf;
}
if(tagmn[p]!=inf) {
Min_tag(p<<1,tagmn[p]);
Min_tag(p<<1|1,tagmn[p]);
tagmn[p]=inf;
}
}
void Max(int p,int l,int r,int L,int R,int v) {
if(L<=l&&r<=R) {
Max_tag(p,v);
return;
}
int mid=(l+r)>>1;push_down(p);
if(L<=mid)Max(p<<1,l,mid,L,R,v);
if(R>mid)Max(p<<1|1,mid+1,r,L,R,v);
update(p);
}
void Min(int p,int l,int r,int L,int R,int v) {
if(L<=l&&r<=R) {
Min_tag(p,v);
return;
}
int mid=(l+r)>>1;push_down(p);
if(L<=mid)Min(p<<1,l,mid,L,R,v);
if(R>mid)Min(p<<1|1,mid+1,r,L,R,v);
update(p);
}
void print(int p,int l,int r) {
if(l==r) {printf("%d\n",mx[p]);return;}
int mid=(l+r)>>1;push_down(p);
print(p<<1,l,mid),print(p<<1|1,mid+1,r);
}
}T;
int main() {
n=read(),m=read();T.build(1,1,n);
for(int i=1;i<=m;i++) {
int opt=read(),l=read()+1,r=read()+1,v=read();
if(opt==1)T.Max(1,1,n,l,r,v);
else T.Min(1,1,n,l,r,v);
}T.print(1,1,n);
return 0;
}
BZOJ4364:[IOI2014]Wall的更多相关文章
- [IOI2014]Wall
[IOI2014]Wall 题目大意: 给你一个长度为\(n(n\le2\times10^6)\)的数列,初始全为\(0\).\(m(m\le5\times10^5)\)次操作,每次让区间\([l_i ...
- 4364: [IOI2014]wall砖墙
4364: [IOI2014]wall砖墙 链接 分析: 线段树,维护一个最大值,一个最小值. 代码: #include<bits/stdc++.h> ],*p1 = buf,*p2 = ...
- bzoj4364: [IOI2014]wall砖墙
线段树打标记的好(luo)题 打打标记,记得下移 = =听说2000000是用来卡线段树的 = =怎么办呢,,, = =打个读入优化看看能不能卡过去吧 #include<cstdio> # ...
- BZOJ4364: [IOI2014]wall砖墙(线段树)
题意 题目链接 Sol 一个显然的思路是维护最大最小值以及最大最小值的覆盖标记. https://paste.ubuntu.com/p/WXpBvzF6Y2/ 但实际上因为这题只需要输出最后的操作序列 ...
- P4560 [IOI2014]Wall 砖墙
题目描述 给定一个长度为 nn且初始值全为 00的序列.你需要支持以下两种操作: Add L, R, hL,R,h:将序列 [L, R][L,R]内所有值小于 hh的元素都赋为 hh,此时不改变高度大 ...
- 【[IOI2014]Wall 砖墙】
好像随便一卡就最优解了 malao告诉我这道题挺不错的,于是就去写了写 这两个操作很有灵性啊,感觉这么有特点的数大概是需要分块维护的吧 但是并没有什么区间查询,只是在最后输出整个序列 于是我们就直接用 ...
- LUOGU P4560 [IOI2014]Wall 砖墙 (线段树)
传送门 解题思路 线段树打标记,刚开始想复杂了,维护了四个标记.后来才知道只需要维护一个最大值最小值即可,然后更新的时候分类讨论一下. 代码 #include<iostream> #inc ...
- Linux编译工具:gcc入门
1. 什么是gcc gcc的全称是GNU Compiler Collection,它是一个能够编译多种语言的编译器.最开始gcc是作为C语言的编译器(GNU C Compiler),现在除了c语言,还 ...
- Image Wall - jQuery & CSS3 图片墙效果
今天我们要为您展示如何基于 jQuery 和 CSS3 创建一个整洁的图片墙效果.我们的想法是在页面上洒上一些大小不同的缩略图,并在当我们点击图片时候显示丝带,会显示一些描述,再次点击缩略图时,丝带将 ...
随机推荐
- 【BZOJ3784】树上的路径 点分治序+ST表
[BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...
- vs05字节对齐问题又一不小心就弄去了我一个下午的时间
由于一字节的对齐问题,我调一个库调了我基本一个下午..... 犯错其实并不可怕, 可怕的是你一犯再犯...... 这也算得上是难能可贵... /Zp (Struct Member Alignment) ...
- 大数据学习系列(6)-- zookeeper集群搭建
下载 wget http://mirrors.shuosc.org/apache/zookeeper/zookeeper-3.3.6/zookeeper-3.3.6.tar.gz tar -zxvf ...
- php header, 允许ajax跨域访问
<?php header('content-type:application:json;charset=utf8'); header('Access-Control-Allow-Origin:* ...
- SAP ATP邏輯可用性檢查
[转http://tqmeng.blog.163.com/blog/static/169263916201162002414612/]SAP ATP邏輯可用性檢查1.可用性檢查群組OVZ2主要用於檢查 ...
- python基础14 ---函数模块5(模块和包)
模块与包 一.模块 1.模块是怎么诞生的. 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护.为了编写可维护的代码,我们把很多函数分组,分别放到 不同的文 ...
- jQuery设计理念
jQuery设计理念 引用百科的介绍: jQuery是继prototype之后又一个优秀的Javascript框架.它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器(IE 6.0+, FF 1. ...
- Block的详细介绍
关于block的介绍 ==ios中的内存空间分级== 栈区 存放函数参数值.局部变量.函数返回地址等,函数跳转跳转时现场保护(寄存器),这些系统都会帮我们自动实现,无需我们干预. 所以大量的局部变量, ...
- 每天一个Linux命令(7)pwd命令
pwd命令以绝对路径的方式显示用户当前工作目录.命令将当前目录的全路径名称(从根目录)写入标准输出.全部目录使用/分隔.第一个/表示根目录,最后一个目录是当前目录. (1)用法介绍: pwd[ ...
- hihocoder #1032 : 最长回文子串【 manacher算法实现 】
#1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...