ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices
of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.
The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is
costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.
NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.
Input
There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers,
N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following
N lines contains two integers, x and y (-10000 ≤
x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.
Output
If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.
Sample Input
3 3
0 0
1 1
0 2
Sample Output
0
题意:给定n个点的坐标,先问这些点能否组成一个凸包,假设是凸包,问用不相交的线来切这个凸包使得凸包仅仅由三角形组成。依据costi, j = |xi + xj| * |yi + yj| % p
算切线的费用,问最少的分割费用。 思路:第一次做凸包,抄模板,ZeroClock 图画的非常好,就不反复了#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;
const int inf = 1000000000; struct point {
int x, y;
} p[maxn], save[maxn], tmp[maxn];
int cost[maxn][maxn], n, m;
int dp[maxn][maxn]; int dis(point p1, point p2, point p0) {
return (p1.x-p0.x) * (p2.y-p0.y) - (p2.x-p0.x) * (p1.y-p0.y);
} bool cmp(const point &a, const point &b) {
if (a.y == b.y) return a.x < b.x;
return a.y < b.y;
} int Graham(point *p,int n) {
sort(p,p + n,cmp);
save[0] = p[0];
save[1] = p[1];
int top = 1;
for (int i = 0;i < n; i++) {
while (top && dis(save[top],p[i],save[top-1]) >= 0) top--;
save[++top] = p[i];
} int mid = top;
for(int i = n - 2; i >= 0; i--) {
while (top > mid && dis(save[top],p[i],save[top-1])>=0) top--;
save[++top]=p[i];
}
return top;
} int Count(point a, point b) {
return (abs(a.x+b.x) * abs(a.y+b.y)) % m;
} int main() {
while (scanf("%d%d",&n,&m) != EOF) {
for (int i = 0; i < n; ++i)
scanf("%d%d",&p[i].x,&p[i].y); int tot = Graham(p,n); //求凸包
if (tot != n) printf("I can't cut.\n");
else {
memset(cost,0,sizeof(cost));
for (int i = 0; i < n; ++i)
for (int j = i + 2; j < n; ++j)
cost[i][j] = cost[j][i] = Count(save[i],save[j]); for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j)
dp[i][j] = inf;
dp[i][(i+1)%n] = 0;
} for (int i = n - 3; i >= 0; i--)
for (int j = i + 2; j < n; j++)
for (int k = i + 1; k <= j - 1; k++)
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
printf("%d\n",dp[0][n-1]);
}
}
return 0;
}
ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)的更多相关文章
- ZOJ 3537 Cake (区间DP,三角形剖分)
题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...
- ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)
题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- zoj 3537 Cake (凸包确定+间隔dp)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-sha ...
- zoj 3537 Cake(区间dp)
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...
随机推荐
- Node.js 本地Xhr取得Node.js服务端数据的例子
本以为用XHR取Nodejs http出的一段文字很简单,因为xhr取值和nodejs http出文字都是好弄的,谁知一试不是这回事,中间有个关键步骤需要实现. nodejs http出文字显示在浏览 ...
- Android无数据线调试方法
平时在Android设备上调试程序.通常是将Android设备用数据线和PC机相连. 可是,在没有数据线的情况下也能够: 1.将PC机和Android设备连到同一网段. 2.获取Android设备的I ...
- 已加载“C:\Windows\SysWOW64\ntdll.dll”。无法查找或打开 PDB 文件。
“Win32Project3.exe”(Win32): 已加载“D:\software\VS2013\VS2013 文档\Win32Project3\Debug\Win32Project3.exe”. ...
- python调度框架APScheduler使用详解
# coding=utf-8 """ Demonstrates how to use the background scheduler to schedule a job ...
- STL学习笔记(移除性算法)
本节所列的算法是根据元素值或某一准则,在一个区间内移除某些元素. 这些算法并不能改变元素的数量,它们只是将原本置于后面的“不移除元素”向前移动,覆盖那些被移除的元素. 这些算法都返回逻辑上的新终点 移 ...
- 【Excle数据透视】如何隐藏数据透视表字段的分类汇总
如下图:是显示数据透视表的分类汇总 那么我们现在想弄成以下这样,不显示分类汇总 如何操作呢? 步骤 单击数据透视表任意单元格→数据透视表工具→设计→分类汇总→不显示分类汇总 ***显示分类汇总*** ...
- java 字符深入知识,待整理
'编',"编", 为什么获取到的字节数组长度不一样 http://www.cnblogs.com/yongdaimi/p/5899328.html Unicode 官网 http ...
- HTTP图解--了解Web及网络基础
1.网络基础TCP/IP 通常使用的网络是在TCP/IP协议族的基础上运行的,http属于它内部的一个子集. TCP/IP协议族按层次分别分为:应用层.传输层.网络层和数据链路层.分层的好处在于各司其 ...
- 工作总结 sql 中过滤条件 中的 (where中的) and
总结: 在where 后面做过滤的时候 如果 有 字段1 必须满足某种值 字段2 要满足 某种或某值的时候 直接 and 字段1 = ‘a’ and 字段2 = ‘b’ or 字 ...
- [Material Design] 教你做一个Material风格、动画的button(MaterialButton)
原创作品,转载请注明出处:http://blog.csdn.net/qiujuer/article/details/39831451 前段时间Android L 公布了,相信看过公布会了解过的朋友都为 ...