SparkMLlib分类算法之逻辑回归算法
SparkMLlib分类算法之逻辑回归算法
(一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836)
逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同。逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估。

(二),SparkMLlib逻辑回归应用
1,数据集的选择:http://www.kaggle.com/c/stumbleupon/data 中的(train.txt和test.txt)
2,数据集描述:关于涉及网页中推荐的页面是短暂(短暂存在,很快就不流行了)还是长久(长时间流行)的分类
3,数据预处理及获取训练集和测试集
val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}.randomSplit(Array(0.7,0.3),11L)
val data_train=data_file(0)//训练集
val data_test=data_file(1)//测试集
4,逻辑回归模型训练及模型评价
val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*
有两种最优化算法可以求解逻辑回归问题并求出最优参数:mini-batch gradient descent(梯度下降法),L-BFGS法。我们更推荐使用L-BFGS,因为它能更快聚合,而且现在spark2.1.0已经放弃LogisticRegressionWithLSGD()模式了*/
/*性能评估:使用精确度,PR曲线,AOC曲线*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//0.6079335793357934
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 73.1104%, Area under ROC: 60.4200%*/
5,模型优化
特征标准化处理

val orig_file=sc.textFile("train_nohead.tsv")
//println(orig_file.first())
val data_file=orig_file.map(_.split("\t")).map{
r =>
val trimmed =r.map(_.replace("\"",""))
val lable=trimmed(r.length-1).toDouble
val feature=trimmed.slice(4,r.length-1).map(d => if(d=="?")0.0
else d.toDouble)
LabeledPoint(lable,Vectors.dense(feature))
}
/*特征标准化优化*/
val vectors=data_file.map(x =>x.features)
val rows=new RowMatrix(vectors)
println(rows.computeColumnSummaryStatistics().variance)//每列的方差
val scaler=new StandardScaler(withMean=true,withStd=true).fit(vectors)//标准化
val scaled_data=data_file.map(point => LabeledPoint(point.label,scaler.transform(point.features)))
.randomSplit(Array(0.7,0.3),11L)
val data_train=scaled_data(0)
val data_test=scaled_data(1)
/*训练逻辑回归模型*/
val model_log=new LogisticRegressionWithLBFGS().setNumClasses(2).run(data_train)
/*在使用模型做预测时,如何知道预测到底好不好呢?换句话说,应该知道怎么评估模型性能。
通常在二分类中使用的评估方法包括:预测正确率和错误率、准确率和召回率、准确率 召回率
曲线下方的面积、 ROC 曲线、 ROC 曲线下的面积和 F-Measure*/
val predictionAndLabels=data_test.map(point =>
(model_log.predict(point.features),point.label)
)
val metricsLG=new MulticlassMetrics(predictionAndLabels)//精确度:0.6236162361623616
val metrics=Seq(model_log).map{
model =>
val socreAndLabels=data_test.map {
point => (model.predict(point.features), point.label)
}
val metrics=new BinaryClassificationMetrics(socreAndLabels)
(model.getClass.getSimpleName,metrics.areaUnderPR(),metrics.areaUnderROC())
}
val allMetrics = metrics
allMetrics.foreach{ case (m, pr, roc) =>
println(f"$m, Area under PR: ${pr * 100.0}%2.4f%%, Area under ROC: ${roc * 100.0}%2.4f%%")
}
/*LogisticRegressionModel, Area under PR: 74.1103%, Area under ROC: 62.0064%*/
6,总结
1,如何能提高更明显的精度。。。。。
2,对逻辑回归的认识还不够。。。。
SparkMLlib分类算法之逻辑回归算法的更多相关文章
- SparkMLlib学习分类算法之逻辑回归算法
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...
- 分类算法之逻辑回归(Logistic Regression
分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...
- sklearn调用逻辑回归算法
1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...
- 逻辑回归算法的原理及实现(LR)
Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- Spark机器学习(2):逻辑回归算法
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...
- 《BI那点儿事》Microsoft 逻辑回归算法——预测股票的涨跌
数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE ...
- Python实现机器学习算法:逻辑回归
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import ma ...
- 每日一个机器学习算法——LR(逻辑回归)
本系列文章用于汇集知识点,查漏补缺,面试找工作之用.数学公式较多,解释较少. 1.假设 2.sigmoid函数: 3.假设的含义: 4.性质: 5.找一个凸损失函数 6.可由最大似然估计推导出 单个样 ...
随机推荐
- hdu 6010 路径交
hdu 6010 路径交(lca + 线段树) 题意: 给出一棵大小为\(n\)的树和\(m\)条路径,求第\(L\)条路径到第\(R\)条路径的交的路径的长度 思路: 本题的关键就是求路径交 假设存 ...
- CF995E Number Clicker 解题报告
CF995E Number Clicker 题目描述 Allen is playing Number Clicker on his phone. He starts with an integer u ...
- 在GitHub多个帐号上添加SSH公钥
GitHub后台可以添加多个SSH Keys,但是同一个SSH Keys只能在添加在一个帐号上(添加时提示“Key is already in use”).理由很容易想到,SSH公钥使用时相当于用户名 ...
- 手动编写一个简单的loadrunner脚本
loadrunner除了自动录制脚本外,还可以手动编写脚本,通过右键+inset step添加步骤,还可以手动添加事务,集合点等 下面是一个简单的Action脚本,服务是运行在本机的flask服务: ...
- windows批处理命令学习
初入批处理的学习,发现运行window的系统命令会减少很多的劳动,很方便. 参考例子: http://www.jb51.net/article/41322.htm
- 关于0x*** 十六进制的运算。为什么枚举多用十六进制的运算原因。。
1.看个人爱好 2.可以看出布尔运算的结果. 3.可以更快进行and和or 运算
- 玩具谜题(NOIP2016)(纯模拟)
原题传送门 神奇的题目.. 朝左朝右异或一下就好了 细节处理一下,输出now的字符串 下面贴代码 #include<iostream> #include<cstdio> #in ...
- Fiddler抓包8-打断点(bpu)【转载】
本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/fiddler/ 前言 先给大家讲一则小故事,在我们很小的时候是没有手机的,那时候跟女神 ...
- Java屌炸天学习路线图
第一阶段:Java基础篇 编号 课程 课程目录 打包下载地址 讲师 01 J2SE(40课时) http://www.java1234.com/zy001.html http://pa ...
- 基于django rest framework的mock server实践
网上找了一下mock server的实现,发现python的基本都是基于flask来实现的,因最近在学django,就尝试用drf实现了下: A brief introduction of sui_m ...