用扩展欧几里德Extended_Euclid解线性模方程,思路在注释里面了。

注意数据范围不要爆int了。

/*********************************************************
* --------------Tyrannosaurus--------- *
* author AbyssalFish *
**********************************************************/
#include<bits/stdc++.h>
using namespace std; typedef long long ll; /*
取模可以说是个不定方程
如果x3 和 x1满足递推关系,则有
a^2*x1 + (a+1)*b = x3 mod m
(a+1)*b + m * k = x3 - a^2*x1 枚举a,则b和k未知, extended_Euclid
求出一组解 (a+1)*x0 + m*y0 = d
d = gcd(a+1, m)是最小正线性组合,(不包括0,0
对于其他任意的线性组合的和为c, 都是d的倍数,系数(x0 y0)* (c/d)
b在模m意义下唯一 O(T*m)
*/ int ex_euclid(int a, int b, int &x, int &y)
{
if(!b){
x = ; y = ;
return a;
}else {
int d = ex_euclid(b, a%b, y, x);
y -= a/b*x;
return d;
}
} const int mod = , maxn = ;
int dat[maxn];
int n; bool check(int a,int &b)
{
int x,y;
int d = ex_euclid(mod, a+, x, y);
int aa = a*a%mod, c = (dat[]-aa*dat[])%mod;
if( (c) % d) return false;
b = c/d*y % mod; //这里要按mod^3算,看见/d自动脑补成了mod^2...
c = (a+)*b%mod;
for(int i = ; i < n; i++){
if( (aa*dat[i-]+c - dat[i])%mod ) {
return false;
}
}
if(b < mod) b += mod;
return true;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
scanf("%d", &n);
for(int i = ; i < n; i++) scanf("%d",dat+i);
int a, b;
for(a = ; a < mod; a++){
if(check(a,b)) {
for(int i = ; i < n; i++){
printf("%d\n", (a*dat[i]+b)%mod);
}
break;
}
}
return ;
}

UVA 12169 Disgruntled Judge(Extended_Euclid)的更多相关文章

  1. UVa 12169 - Disgruntled Judge(拓展欧几里德)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA.12169 Disgruntled Judge ( 拓展欧几里得 )

    UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * ...

  3. UVA 12169 Disgruntled Judge 扩展欧几里得

    /** 题目:UVA 12169 Disgruntled Judge 链接:https://vjudge.net/problem/UVA-12169 题意:原题 思路: a,b范围都在10000以内. ...

  4. UVA 12169 Disgruntled Judge【扩展欧几里德】

    题意:随机选取x1,a,b,根据公式xi=(a*xi-1+b)%10001得到一个长度为2*n的序列,奇数项作为输入,求偶数项,若有多种,随机输出一组答案. 思路:a和b均未知,可以考虑枚举a和b,时 ...

  5. hdu 2769 uva 12169 Disgruntled Judge 拓展欧几里德

    //数据是有多水 连 10^10的枚举都能过 关于拓展欧几里德:大概就是x1=y2,y1=x2-[a/b]y2,按这个规律递归到gcd(a,0)的形式,此时公因数为a,方程也变为a*x+0*y=gcd ...

  6. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  7. UVA 12169 Disgruntled Judge

    我该怎么说这道题呢...说简单其实也简单,就枚举模拟,开始卡了好久,今天看到这题没a又写了遍,看似会超时的代码交上去a了,果然实践是检验真理的唯一标准... #include <iostream ...

  8. UVa 12169 Disgruntled Judge 紫书

    思路还是按照紫书,枚举a,得出b, 然后验证. 代码参考了LRJ的. #include <cstdio> #include <iostream> using namespace ...

  9. CJOJ 1071 【Uva】硬币问题(动态规划)

    CJOJ 1071 [Uva]硬币问题(动态规划) Description 有n种硬币,面值分别为v1, v2, ..., vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为 ...

随机推荐

  1. linux---安装ftp并配置用户部分权限

    一.启动vsftpd服务1. 启动VSFTP服务器A:cenos下运行:yum install vsftpdB. 登录Linux主机后,运行命令:”service vsftpd start”C. 要让 ...

  2. The Knuth-Morris-Pratt Algorithm in my own words(转)

    origianl For the past few days, I’ve been reading various explanations of the Knuth-Morris-Pratt str ...

  3. linux线程私有数据---TSD池

    进程内的所有线程共享进程的数据空间,所以全局变量为所有线程共有.在某些场景下,线程需要保存自己的私有数据,这时可以创建线程私有数据(Thread-specific Data)TSD来解决.在线程内部, ...

  4. [Xcode 实际操作]四、常用控件-(12)环形进度条控件的使用

    目录:[Swift]Xcode实际操作 本文将演示环形进度条控件的使用. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit class Vi ...

  5. 如何从git上clone一个项目

    今天想从自己的git上down下来代码,补充一些新的学习demo,不过因为平时工作中不适用git管理代码,所以,有些命令行忘记了.现在,通过这种方式再加深一遍印象吧. 那我就假设已经安装好了git了. ...

  6. [題解](迭代加深)POJ2248_Addition Chains

    發現m不會特別大,也就是層數比較淺,所以採用迭代加深 由於xi+xj可能相同,所以開一下vis數組判斷重複 #include<iostream> #include<cstdio> ...

  7. 原生JS实现雪花特效

    今天在校园招聘上被问到的问题,用JS写出雪花的效果.我打算使用多种方法来试试如何实现雪花. 这是目前按照网上某种思路模仿的第一种雪花,不太好看,但是大致意思清楚. 思路1:该思路直接由JS实现. 雪花 ...

  8. py---------网络编程

    一.软件开发架构 我们了解的涉及到两个程序之间通讯的应用大致可以分为两种: 第一种是应用类:qq.微信.网盘.优酷这一类是属于需要安装的桌面应用 第二种是web类:比如百度.知乎.博客园等使用浏览器访 ...

  9. POJ - 3450

    题目链接:http://poj.org/problem?id=3450 Corporate Identity Time Limit: 3000MS   Memory Limit: 65536K Tot ...

  10. HDU - 5920 Ugly Problem 求解第一个小于n的回文数

    http://acm.hdu.edu.cn/showproblem.php?pid=5920 http://www.cnblogs.com/xudong-bupt/p/4015226.html 把前半 ...