题目描述

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应
该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。他这次又准备带一些受欢迎的食物,
如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下:
承德汉堡:偶数个
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃多:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆片炒肉:不超过一个。
面包:3的倍数个
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛
),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

输入

输入一个数字N,1<=n<=10^500

输出

如题

样例输入

输入样例1
1
输入样例2
5

样例输出

输出样例1
1
输出样例2
35
 
对于每种食物的限制,我们可以用多项式形式来表示,$a_{i}x^i$表示这种食物取$i$个时的方案数是$a_{i}$。
那么对于每种食物,我们可以列出对应多项式,答案就是将所有多项式相乘后$x^n$的系数。
承德汉堡:$\sum\limits_{i=0}^{+\infty}x^{2i}=\frac{1}{1-x^2}$
可乐:$1+x$
鸡腿:$1+x+x^2=\frac{x^3-1}{x-1}$
蜜桃多:$\sum\limits_{i=0}^{+\infty}x^{2i+1}=\frac{x}{1-x^2}$
鸡块:$\sum\limits_{i=0}^{+\infty}x^{4i}=\frac{1}{1-x^4}$
包子:$1+x+x^2+x^3=\frac{x^4-1}{x-1}$
土豆片炒肉:$1+x$
面包:$\sum\limits_{i=0}^{+\infty}x^{3i}=\frac{1}{1-x^3}$
由等比数列求和公式即可推得等式右边的部分,那么将所有生成函数都乘起来就能得到:$\frac{x}{(1-x)^4}$
根据泰勒展开可以知道$\frac{1}{(1-x)^m}=(1+x+x^2+x^3+……)^m$,求第$n$项系数就是$C_{m+n-1}^{m-1}$
乘上$x$就相当于把系数都右移一位,即求第$n-1$项系数为$C_{m+n-2}^{m-1}$,将$m=4$代入,那么答案就是$C_{n+2}^{3}$。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define mod 10007
using namespace std;
int ans;
int n;
char s[1000];
ll quick(int x,int y)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
int main()
{
scanf("%s",s+1);
int len=strlen(s+1);
for(int i=1;i<=len;i++)
{
n=n*10+s[i]-'0';
n%=mod;
}
ans=n*(n+1)%mod;
ans=ans*(n+2)%mod;
ans=ans*quick(6,mod-2)%mod;
ans=(ans%mod+mod)%mod;
printf("%d",ans);
}

BZOJ3028食物——生成函数+泰勒展开的更多相关文章

  1. BZOJ3028: 食物(生成函数)

    题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...

  2. BZOJ3028 食物 (生成函数)

    首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...

  3. BZOJ3028 食物(生成函数)

    显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...

  4. 2018.12.30 bzoj3028: 食物(生成函数)

    传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21​ ...

  5. 【bzoj3028】 食物 生成函数+隔板法

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$ ...

  6. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  7. bzoj3028食物

    http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...

  8. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  9. BZOJ3028 食物 和 LOJ6261 一个人的高三楼

    总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...

随机推荐

  1. angular路由为空重定向到指定路由

    { path: '', redirectTo: 'home', pathMatch: 'full' }

  2. GeoServer安装配置

    需安装文件 1.安装jdk 2.安装GeoServer: (1).在安装GeoServer前,需要安装java运行环境,点击文件夹内的jdk安装文件,选择jdk安装路径进行安装:直到安装完成. (2) ...

  3. 从.Net到Java学习第八篇——SpringBoot实现session共享和国际化

    从.Net到Java学习系列目录 SpringBoot Session共享 修改pom.xml添加依赖 <!--spring session--> <dependency> & ...

  4. python 的with用途(清理资源和异常处理,同时代码精简)

    参考如下博客. https://www.cnblogs.com/DswCnblog/p/6126588.html #!/usr/bin/env python # with_example02.py c ...

  5. grid++报表使用时注意事项

    #开始使用:Grid++Report 可以在 Visual C#.Net 与 Visual Basic.Net 下的 WinForm 项目中使用.在项目中使用 Grid++Report 之前,首先必须 ...

  6. 安卓开发:UI组件-RadioButton和复选框CheckBox

    2.5RadioButton 为用户提供由两个及以上互斥的选项组成的选项集. 2.5.1精简代码 在按钮变多之后,多次重复书写点击事件有些繁琐,我们在这里创建一个事件OnClick,每次点击时调用该事 ...

  7. NFS 安装与配置

    NFS通常用于网络中的多台计算机实现共享存储. 由于测试环境没有购买阿里云的NFS,所以自己搭建一个NFS文件系统,实现一些比如上传图片,静态资源等同享功能. 下面的测试是在CentOS releas ...

  8. Rsync客户端卡死的问题查询

    简介 某备份系统大量使用rsync来传输文件,但是偶尔会出现rsync客户端在上传数据的时候长时间卡死,本文记录了解决问题的步骤. 本文只涉及rsync客户端中IO相关逻辑,关于rsync的发送算法并 ...

  9. js学习之路2: JavaScript 变量

    1. 变量的创建 首先,可以创建一个变量 var firstVar; 这时候,并没有给它赋值.这个变量还是空的. 然后,我们可以给这个变量赋值. firstVar = 128: 2. 变量的赋值 变量 ...

  10. MFC打印

    映射模式是MFC甚至SDK界面编程第1个难点.打印则是第2个难点.这2个都是历史遗留的设计缺陷.这些缺陷还不至于到bug程度,但却很难用,不易理解. MFC提供2个类来实现打印(预览),具体有CPri ...