import numpy as np
x = np.random.randint(1,100,[20,1])
y = np.zeros(20)
k = 3
def initcenter(x,k):
return x[:k] kc = initcenter(x,k)
kc
def nearest(kc,i):
d=(abs(kc-i))
w=np.where(d==np.min(d))
return w[0][0] kc = initcenter(x,k)
nearest(kc,56)
def xclassify(x,y,kc):
for i in range(x.shape[0]):
y[i] = nearest(kc,x[i])
return y kc = initcenter(x,k)
y = xclassify(x,y,kc)
print(kc,y)
def kcmean(x,y,kc,k):
l = list(kc)
flag = False
for c in range(k):
m = np.where(y == c)
n = np.mean(x[m])
if l[c] != n:
l[c] = n
flag = True
print(l,flag)
return (np.array(l),flag) kc = initcenter(x,k)
flag = True
k = 3 while flag:
y = xclassify(x,y,kc)
kc,flag = kcmean(x,y,kc,k)

运行结果

二.鸢尾花花瓣长度数据做聚类并用散点图显示

import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
x = iris.data[:,1]
y = np.zeros(150) def initcenter(x,k): #初始聚类中心数组
return x[0:k].reshape(k) def nearest(kc,i): #数组中的值,与聚类中心最小距离所在类别的索引号
d = (abs(kc-i))
w = np.where(d == np.min(d))
return w[0][0] def xclassify(x,y,kc):
for i in range(x.shape[0]): #对数组的每个值进行分类,shape[0]读取矩阵第一维度的长度
y[i] = nearest(kc,x[i])
return y def kcmean(x,y,kc,k): #计算各聚类新均值
l = list(kc)
flag = False
for c in range(k):
print(c)
m = np.where(y == c)
n=np.mean(x[m])
if l[c] != n:
l[c] = n
flag = True #聚类中心发生变化
print(l,flag)
return (np.array(l),flag) k = 3
kc = initcenter(x,k) flag = True
print(x,y,kc,flag) #判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2
while flag:
y = xclassify(x,y,kc)
kc, flag = kcmean(x,y,kc,k)
print(y,kc,type(kc)) print(x,y)
import matplotlib.pyplot as plt
plt.scatter(x,x,c=y,s=50,cmap="rainbow");
plt.show()

运行结果

第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用的更多相关文章

  1. 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...

  2. 聚类--K均值算法

    import numpy as np from sklearn.datasets import load_iris iris = load_iris() x = iris.data[:,1] y = ...

  3. K 均值算法-如何让数据自动分组

    公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍到的一些机器学习算法都是监督学习算法.所谓监督学习,就是既有特征数据,又有目标数据. 而本篇文章要介绍 ...

  4. 聚类算法:K-means 算法(k均值算法)

    k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...

  5. 机器学习之K均值算法(K-means)聚类

    K均值算法(K-means)聚类 [关键词]K个种子,均值 一.K-means算法原理 聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中. K-Means算法是一种聚类分析 ...

  6. 一句话总结K均值算法

    一句话总结K均值算法 核心:把样本分配到离它最近的类中心所属的类,类中心由属于这个类的所有样本确定. k均值算法是一种无监督的聚类算法.算法将每个样本分配到离它最近的那个类中心所代表的类,而类中心的确 ...

  7. 【机器学习】K均值算法(I)

    K均值算法是一类非监督学习类,其可以通过观察样本的离散性来对样本进行分类. 例如,在对如下图所示的样本中进行聚类,则执行如下步骤 1:随机选取3个点作为聚类中心. 2:簇分配:遍历所有样本然后依据每个 ...

  8. Bisecting KMeans (二分K均值)算法讲解及实现

    算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选 ...

  9. KMeans (K均值)算法讲解及实现

    算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标 ...

随机推荐

  1. 20175312 2018-2019-2 《Java程序设计》第7周学习总结

    20175312 2018-2019-2 <Java程序设计>第7周学习总结 教材学习内容总结 已依照蓝墨云班课的要求完成了第八章的学习,主要的学习渠道是PPT,和书的课后习题. 总结如下 ...

  2. vue安装过后遇到的坑

    vue在所有配置文件安装过之后: 运行 npm run dev 不能自动打开浏览器,但是命令行中已经提示我们运行成功了 等很久也没有自动打开浏览器,必须要自己手动的输入地址. 那么我们如何在npm r ...

  3. JS 作用域与变量提升---JS 学习笔记(三)

    你知道下面的JavaScript代码执行时会输出什么吗? var foo = 1; function bar() { if (!foo) { var foo = 10; } console.log(f ...

  4. SQL Server 视图(仅代码及练习)

    use electric go --建立供电局1#仓库所存放物资的视图. create view s1_stock as select * from stock where warehouse='供电 ...

  5. roc曲线和auc

    只是为了复习一下,在评价分类器的性能好坏时,通常用recall和precision, PS:CNN做图像分类还是用了loss 和 accuracy 使用ROC的目的在于更好的(直观+量化)评价分类模型 ...

  6. 2>&1 什么意思

    1.  0 表示stdin标准输入 2.  1 表示stdout标准输出 3.   2表示stderr标准错误 意思是:把标准错误重定向到标准输出?

  7. C#流程控制语句--迭代语句(while,do....while, for , foreach)

    迭代语句:有的时候,可能需要多次执行同一块代码.函数中的第一个语句先执行,接着是第二个语句,依此类推. 迭代语句:while(先检查后执行) while(条件表达式 bool类型) { 代码语句 } ...

  8. JQ 实现轮播图(3D旋转图片轮播效果)

    轮播图效果如下: 代码: <!DOCTYPE html> <html xmlns="/www.w3.org/1999/xhtml"> <head> ...

  9. Ubuntu18.04: GPU Driver 390.116 + CUDA9.0 + cuDNN7 + tensorflow 和pytorch环境搭建

    1.close nouveau 终端输入:sudo gedit /etc/modprobe.d/blacklist.conf 末尾加两行 blacklist nouveau options nouve ...

  10. 一条shell命令让多台Linux服务器执行

    1.环境 局域网环境有3台Linux服务器,配置host文件 [root@master1 ~]# vim /etc/hosts 192.168.8.201 master1 192.168.8.202 ...