PBRT笔记(4)——颜色和辐射度
SPD 光谱功率分布
CoefficientSpectrum
根据给定采样数表示光谱,为RGBSpectrum、SampledSpectrum的父类。
重载大量的基础代码,比较简单不做赘述。其中为了方便访问对应区域的SPD,而重载了[]操作符。(TabulatedBSSRDF等会用到)
该类只要以各种基础运算函数、重载各种操作符为主,以及一个 Float c[nSpectrumSamples];用于保存SPD信息。
SampledSpectrum
SampledSpectrum则将光谱表达为波长范围上的采样点集合。(通过采样求得光谱系数)
人眼对400~700纳米波长的光最敏感,通常采样量为30即可准确地表示渲染时的SPD
static SampledSpectrum FromSampled(const Float *lambda, const Float *v,int n) {
//如果处于无序状态,则在排序后在返回结果
spectrum
if (!SpectrumSamplesSorted(lambda, v, n)) {
std::vector<Float> slambda(&lambda[0], &lambda[n]);
std::vector<Float> sv(&v[0], &v[n]);
//SortSpectrumSamples:讲sLambda与sv放入一个map中,使用sort进行排序后在放回对应的Vector
//这里出现了一个骚操作,因为Vector存储的数据是紧挨着存储的和数组一样,所以可以直接用float*取地址进行操作
SortSpectrumSamples(&slambda[0], &sv[0], n);
return FromSampled(&slambda[0], &sv[0], n);
}
SampledSpectrum r;
for (int i = 0; i < nSpectralSamples; ++i) {
//计算该采样区域的平均值
Float lambda0 = Lerp(Float(i) / Float(nSpectralSamples),
sampledLambdaStart, sampledLambdaEnd);
Float lambda1 = Lerp(Float(i + 1) / Float(nSpectralSamples),
sampledLambdaStart, sampledLambdaEnd);
r.c[i] = AverageSpectrumSamples(lambda, v, n, lambda0, lambda1);
}
return r;
}
Float AverageSpectrumSamples(const Float *lambda, const Float *vals, int n,
Float lambdaStart, Float lambdaEnd) {
for (int i = 0; i < n - 1; ++i) CHECK_GT(lambda[i + 1], lambda[i]);
CHECK_LT(lambdaStart, lambdaEnd);
//处理越界以及单一采样的情况
if (lambdaEnd <= lambda[0]) return vals[0];
if (lambdaStart >= lambda[n - 1]) return vals[n - 1];
if (n == 1) return vals[0];
Float sum = 0;
//如果头尾采样都在区间内,则将其加入结果中
if (lambdaStart < lambda[0]) sum += vals[0] * (lambda[0] - lambdaStart);
if (lambdaEnd > lambda[n - 1])
sum += vals[n - 1] * (lambdaEnd - lambda[n - 1]);
//移动到对应的区间
int i = 0;
while (lambdaStart > lambda[i + 1]) ++i;
CHECK_LT(i + 1, n);
//遍历各个区间,通过插值计算平均值,最终加到结果中
auto interp = [lambda, vals](Float w, int i) {
return Lerp((w - lambda[i]) / (lambda[i + 1] - lambda[i]), vals[i],
vals[i + 1]);
};
for (; i + 1 < n && lambdaEnd >= lambda[i]; ++i) {
Float segLambdaStart = std::max(lambdaStart, lambda[i]);
Float segLambdaEnd = std::min(lambdaEnd, lambda[i + 1]);
sum += 0.5 * (interp(segLambdaStart, i) + interp(segLambdaEnd, i)) *
(segLambdaEnd - segLambdaStart);
}
return sum / (lambdaEnd - lambdaStart);
}
针对任意SPD转化为$ X_\lambda Y_\lambda Z _\lambda$的计算,PRBT通过三条曲线进行适配。
所有的Spectrum都必须提供这个方法。在渲染图片的一个像素时,一束携带光谱信息的光线射入摄像机中的胶片,第一步胶片会将SPD转化为xyz系数,再经过一系列处理,最终将其转化为可以显示的RGB值。
RGB系数根据基于SPD相应曲线积分计算获得。对于既定曲线,乘积积分可通过预计算实现,并将全转换表示为一个矩阵。
inline void XYZToRGB(const Float xyz[3], Float rgb[3]) {
rgb[0] = 3.240479f * xyz[0] - 1.537150f * xyz[1] - 0.498535f * xyz[2];
rgb[1] = -0.969256f * xyz[0] + 1.875991f * xyz[1] + 0.041556f * xyz[2];
rgb[2] = 0.055648f * xyz[0] - 0.204043f * xyz[1] + 1.057311f * xyz[2];
}
inline void RGBToXYZ(const Float rgb[3], Float xyz[3]) {
xyz[0] = 0.412453f * rgb[0] + 0.357580f * rgb[1] + 0.180423f * rgb[2];
xyz[1] = 0.212671f * rgb[0] + 0.715160f * rgb[1] + 0.072169f * rgb[2];
xyz[2] = 0.019334f * rgb[0] + 0.119193f * rgb[1] + 0.950227f * rgb[2];
}
void ToRGB(Float rgb[3]) const {
Float xyz[3];
ToXYZ(xyz);
XYZToRGB(xyz, rgb);
}
RGBSpectrum
讲光谱系数转化为RGB值(先转成x、y、z,再转成RGB值)
static RGBSpectrum FromSampled(const Float *lambda, const Float *v, int n) {
if (!SpectrumSamplesSorted(lambda, v, n)) {
std::vector<Float> slambda(&lambda[0], &lambda[n]);
std::vector<Float> sv(&v[0], &v[n]);
SortSpectrumSamples(&slambda[0], &sv[0], n);
return FromSampled(&slambda[0], &sv[0], n);
}
Float xyz[3] = {0, 0, 0};
for (int i = 0; i < nCIESamples; ++i) {
Float val = InterpolateSpectrumSamples(lambda, v, n, CIE_lambda[i]);
xyz[0] += val * CIE_X[i];
xyz[1] += val * CIE_Y[i];
xyz[2] += val * CIE_Z[i];
}
Float scale = Float(CIE_lambda[nCIESamples - 1] - CIE_lambda[0]) /
Float(CIE_Y_integral * nCIESamples);
xyz[0] *= scale;
xyz[1] *= scale;
xyz[2] *= scale;
return FromXYZ(xyz);
}
Float InterpolateSpectrumSamples(const Float *lambda, const Float *vals, int n,
Float l) {
for (int i = 0; i < n - 1; ++i) CHECK_GT(lambda[i + 1], lambda[i]);
if (l <= lambda[0]) return vals[0];
if (l >= lambda[n - 1]) return vals[n - 1];
int offset = FindInterval(n, [&](int index) { return lambda[index] <= l; });
CHECK(l >= lambda[offset] && l <= lambda[offset + 1]);
Float t = (l - lambda[offset]) / (lambda[offset + 1] - lambda[offset]);
return Lerp(t, vals[offset], vals[offset + 1]);
}
因为这里的代码都要后面几章才会用到,看得不太明白,待看到后面几章后再补充。
剩下的辐射度部分比较简单(稍微介绍了一下brdf、btdf、bsdf、bssrdf,而且和第二版是一样的),而且知乎上已经有一些比较好的解释了,不做赘述。不过我依然建议去看原文。
PBRT笔记(4)——颜色和辐射度的更多相关文章
- PBRT笔记(8)——材质
BSDF类 表面着色器会绑定场景中每一个图元(被赋予了这个着色器),而表面着色器则由Material类的实例来表示.它会拥有一个BSDF类对象(可能是BSSDF),用于计算表面上每一点的辐射度(颜色) ...
- PBRT笔记(1)——主循环、浮点误差
PBRT2与3之间的改动 增加了一个功能完备的BRDF模型,支持体积光照与重要性多重路径采样. 次表面散射,基于光线追踪技术,无需预处理. 解决浮点数四折五入的问题 光子映射 样本生成 第一章多了讲并 ...
- PBRT笔记(13)——光线传播1:表面反射
采样反射函数 BxDF::Sample_f()方法根据与相应的散射函数相似的分布来选择方向.在8.2节中,该方法用于寻找来自完美镜面的反射和透射光线;在这里讲介绍实现其他类型的采样技术. BxDF:: ...
- PBRT笔记(11)——光源
自发光灯光 至今为止,人们发明了很多光源,现在被广泛使用的有: 白炽灯的钨丝很小.电流通过灯丝时,使得灯丝升温,从而使灯丝发出电磁波,其波长的分布取决于灯丝的温度.但大部分能量都被转化为热能而不是光能 ...
- PBRT笔记(10)——体积散射
体散射处理过程 3个影响参与介质在环境中的辐射度分布的主要因素: 吸收:减少光能,并将其转化为别的能量,例如热量. 发光:由光子发射光能至环境中. 散射:由于粒子碰撞,使得一个方向的辐射度散射至其他方 ...
- PBRT笔记(7)——反射模型
基础术语 表面反射可以分为4大类: diffuse 漫反射 glossy specular 镜面反射高光 perfect specular 完美反射高光 retro-reflective distri ...
- advance shading——基础(辐射度测定)
辐射度测定(radiometry) <real time rendering>在这章上来就说了一大堆光照方面的物理术语,不知该怎么翻译.后来在维基百科上看到这个表,清楚了很多(这里的w是瓦 ...
- PBR Step by Step(二)辐射度
转载请注明出处:http://www.cnblogs.com/jerrycg/p/4929119.html 基于物理的渲染要尽量遵循能量守恒原则,主要的测量单位为辐射度. 辐射能Radiant en ...
- PBRT笔记(14)——光线传播2:体积渲染
传输公式 传输方程是控制光线在吸收.发射和散射辐射的介质中的行为的基本方程.它解释了第11章中描述的所有体积散射过程--吸收.发射和内.外散射.并给出了一个描述环境中辐射分布的方程.光传输方程实际上是 ...
随机推荐
- mongodb 3.6 集群搭建:分片+副本集
mongodb是最常用的nosql数据库,在数据库排名中已经上升到了前六.这篇文章介绍如何搭建高可用的mongodb(分片+副本)集群. 在搭建集群之前,需要首先了解几个概念:路由,分片.副本集.配置 ...
- Python字节数组【bytes/bytearray】
bytes >>> type(b'xxxxx') <class 'bytes'> >>> type('xxxxx') <class 'str'&g ...
- 怎样以快速样式的方式在word文档中生成以下多级自动编号
本篇博文简单介绍一下在word中利用快速样式生成多级编号的方法. 一.自定义多级列表格式: 1.点击,开始--段落--多级列表--定义新的多级列表: 2.设置一级编号: (1)在"此级的编号 ...
- yolo类检测算法解析——yolo v3
每当听到有人问“如何入门计算机视觉”这个问题时,其实我内心是拒绝的,为什么呢?因为我们说的计算机视觉的发展史可谓很长了,它的分支很多,而且理论那是错综复杂交相辉映,就好像数学一样,如何学习数学?这问题 ...
- wc 命令详解
1.wc 命令作用 统计文件里面有多少单词,多少行,多少字符. 2.wc 语法 wc [-lwm] 选项与参数:-l :仅列出行:-w :仅列出多少字(英文单字):-m :多少字符: 3.例子 使用w ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Mysql --创建用户和授权,备份
权限管理 我们知道我们的最高权限管理者是root用户,它拥有着最高的权限操作.包括select.update.delete.update.grant等操作.那么一般情况在公司之后DBA工程师会创建一个 ...
- 【原创】大叔问题定位分享(28)openssh升级到7.4之后ssh跳转异常
服务器集群之间忽然ssh跳转不通 # ssh 192.168.0.1The authenticity of host '192.168.0.1 (192.168.0.1)' can't be esta ...
- thinkphp5.0 ajax分页
放到 ***thinkphp\library\think\paginator\driver\Ajaxbootstrap.php 分页的type参数为ajaxbootstrap <?php/ ...
- windows10 php7安装mongodb 扩展及其他扩展的思路
1. 打开phpinfo 查看 nts(非线程) 还是 ts (线程),然后查看操作位数 注: 86 等于 32 位 ,和你的windows系统64 or 32位无关.比如我的: 2. 下载对应的版本 ...