BZOJ3944 Sum
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
Input
Output
Sample Input
1
2
8
13
30
2333
Sample Output
2 0
22 -2
58 -3
278 -3
1655470 2
显然后面那一坨可以记忆化搜索。
另外因为无法用数组存下来(此时$\frac{n}{i}$大于等于$n^{\frac{2}{3}}$),所以我们考虑用分子(即$i$,显然小于等于$n^{\frac{1}{3}}$)表示这个分数所代表的欧拉函数前缀和,即可避开存不下的尴尬问题。
ps:我讨厌$2^{31}-1$!!!!!!!!看看我代码中的unsigned int就懂了。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef unsigned int uint;
const int MAXN = 5400011;
const int m = 5400000;
const int MAXM = 100011;
int n,prime[MAXN],cnt;
LL mobius[MAXN],phi[MAXN];
LL ans_phi[MAXM],ans_mo[MAXM];
bool vis[MAXN],visp[MAXM],vism[MAXM];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void init(){
mobius[1]=1; phi[1]=1;
for(int i=2;i<=m;i++) {
if(!vis[i]) { prime[++cnt]=i; mobius[i]=-1; phi[i]=i-1; }
for(int j=1;j<=cnt && (LL)i*prime[j]<=m;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) { phi[i*prime[j]]=phi[i]*prime[j]; mobius[i*prime[j]]=0; break; }
else { phi[i*prime[j]]=phi[i]*phi[prime[j]]; mobius[i*prime[j]]=-mobius[i]; }
}
}
for(int i=2;i<=m;i++) mobius[i]+=mobius[i-1],phi[i]+=phi[i-1];
} inline LL get_phi(uint now){
if(now<=m) return phi[now];
int nn=n/now,nex; if(visp[nn]) return ans_phi[nn];
LL sav=(LL)now*(now+1)>>1;
for(uint i=2;i<=now;i=nex+1) {
nex=now/(now/i);
sav-=get_phi(now/i/*!!!*/)*(nex-i+1);
}
visp[nn]=1;
ans_phi[nn]=sav;
return sav;
} inline LL get_mo(uint now){
if(now<=m) return mobius[now];
int nn=n/now,nex; if(vism[nn]) return ans_mo[nn];
LL sav=1;
for(uint i=2;i<=now;i=nex+1) {
nex=now/(now/i);
sav-=get_mo(now/i/*!!!*/)*(nex-i+1);
}
vism[nn]=1;/*!!!*/
ans_mo[nn]=sav;
return sav;
} inline void work(){
int T=getint(); init();
while(T--) {
n=getint(); memset(visp,0,sizeof(visp)); memset(vism,0,sizeof(vism));
LL ans1=get_phi(n); LL ans2=get_mo(n);
printf("%lld %lld\n",ans1,ans2);
}
} int main()
{
work();
return 0;
}
BZOJ3944 Sum的更多相关文章
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
- [BZOJ3944]Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6201 Solved: 1606[Submit][Status][Discuss ...
- BZOJ3944 Sum 数论 杜教筛
原文链接http://www.cnblogs.com/zhouzhendong/p/8671759.html 题目传送门 - BZOJ3944 题意 多组数据(组数<=10). 每组数据一个正整 ...
- 杜教筛 && bzoj3944 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- 杜教筛:Bzoj3944: sum
题意 求\(\sum_{i=1}^{n}\varphi(i)和\sum_{i=1}^{n}\mu(i)\) \(n <= 2^{31}-1\) 不会做啊... 只会线性筛,显然不能线性筛 这个时 ...
- 2019.02.12 bzoj3944: Sum(杜教筛)
传送门 题意: 思路:直接上杜教筛. 知道怎么推导就很简单了,注意预处理的范围. 然后我因为预处理范围不对被zxyoi教育了(ldx你这个傻×两倍常数活该被卡TLE) 喜闻乐见 代码: #includ ...
- bzoj3944: Sum 杜教筛板子题
板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...
- [bzoj3944] sum [杜教筛模板]
题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...
- Min_25筛 学习笔记
这儿只是一个简单说明/概括/总结. 原理见这: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushu ...
随机推荐
- 关于mysql 和Oracle的一大堆麻烦问题的解决方案
[INS-20802] Oracle Net Configuration Assistant 失败 在百度上找了半天并没有找到可靠的解决方案,最后是可以安装完成的,之后我 通过SQL Plus连接就报 ...
- 使用cmd打开java文件,报错:“错误,编码GBK的不可映射字符”
今天使用EditPlus写了一个小程序,用cmd运行时报错--"错误,编码GBK的不可映射字符". 处理办法是用EditPlus另存为时,把编码格式由UTF-8改为ANSI. 然后 ...
- 新手入门指导:Vue 2.0 的建议学习顺序
起步 1. 扎实的 JavaScript / HTML / CSS 基本功.这是前置条件. 2. 通读官方教程 (guide) 的基础篇.不要用任何构建工具,就只用最简单的 <script> ...
- 案例借鉴 | 某通讯巨头的IT建设方案
成都联通作为合并重组后的中国联通在成都的分支机构,拥有基础扎实的通信网络和当前最先进技术的WCDMA网络.随着3G和4G业务的发展领先,成都联通凭借其出色的网络能力和服务,在用户中赢得了口碑. 在IT ...
- 如果你的SharePoint出现了,状态服务问题,InfoPath无法正常使用
Create a new ‘State Service’ Service Application using Powershell February 14, 2012Leave a commentGo ...
- android:使用Messenger进行进程间通信(一)
Messenger简介 Messenger和AIDL是实现进程间通信(interprocess communication)的两种方式. 实际上,Messenger的实现其实是对AIDL的封装. Me ...
- ASP.NET Button、ImageButton、LinkButton、HyperLink区别
这4个控件都属于WEB服务器控件,有很多相同的属性和事件.其区别如下所示. 在*.aspx页面中插入Button控件如以下代码所示.<asp:Button runat="server& ...
- mysql limit分页查询优化写法
在mysql中进行分页查询时,一般会使用limit查询,而且通常查询中都会使用orderby排 序.但是在表数据量比较大的时候,例如查询语句片段limit 10000, 20,数据库会读取10020条 ...
- C语言运算符优先级
优先级 运算符 名称或含义 使用形式 结合方向 说明 1 [] 数组下标 数组名[常量表达式] 左到右 -- () 圆括号 (表达式)/函数名(形参表) -- . 成员选择(对象) 对象.成员名 -- ...
- Linux设备树语法详解
概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写.引入了设备树之后,驱动代 ...
