BZOJ3944 Sum
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
Input
Output
Sample Input
1
2
8
13
30
2333
Sample Output
2 0
22 -2
58 -3
278 -3
1655470 2
显然后面那一坨可以记忆化搜索。
另外因为无法用数组存下来(此时$\frac{n}{i}$大于等于$n^{\frac{2}{3}}$),所以我们考虑用分子(即$i$,显然小于等于$n^{\frac{1}{3}}$)表示这个分数所代表的欧拉函数前缀和,即可避开存不下的尴尬问题。
ps:我讨厌$2^{31}-1$!!!!!!!!看看我代码中的unsigned int就懂了。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef unsigned int uint;
const int MAXN = 5400011;
const int m = 5400000;
const int MAXM = 100011;
int n,prime[MAXN],cnt;
LL mobius[MAXN],phi[MAXN];
LL ans_phi[MAXM],ans_mo[MAXM];
bool vis[MAXN],visp[MAXM],vism[MAXM];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void init(){
mobius[1]=1; phi[1]=1;
for(int i=2;i<=m;i++) {
if(!vis[i]) { prime[++cnt]=i; mobius[i]=-1; phi[i]=i-1; }
for(int j=1;j<=cnt && (LL)i*prime[j]<=m;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) { phi[i*prime[j]]=phi[i]*prime[j]; mobius[i*prime[j]]=0; break; }
else { phi[i*prime[j]]=phi[i]*phi[prime[j]]; mobius[i*prime[j]]=-mobius[i]; }
}
}
for(int i=2;i<=m;i++) mobius[i]+=mobius[i-1],phi[i]+=phi[i-1];
} inline LL get_phi(uint now){
if(now<=m) return phi[now];
int nn=n/now,nex; if(visp[nn]) return ans_phi[nn];
LL sav=(LL)now*(now+1)>>1;
for(uint i=2;i<=now;i=nex+1) {
nex=now/(now/i);
sav-=get_phi(now/i/*!!!*/)*(nex-i+1);
}
visp[nn]=1;
ans_phi[nn]=sav;
return sav;
} inline LL get_mo(uint now){
if(now<=m) return mobius[now];
int nn=n/now,nex; if(vism[nn]) return ans_mo[nn];
LL sav=1;
for(uint i=2;i<=now;i=nex+1) {
nex=now/(now/i);
sav-=get_mo(now/i/*!!!*/)*(nex-i+1);
}
vism[nn]=1;/*!!!*/
ans_mo[nn]=sav;
return sav;
} inline void work(){
int T=getint(); init();
while(T--) {
n=getint(); memset(visp,0,sizeof(visp)); memset(vism,0,sizeof(vism));
LL ans1=get_phi(n); LL ans2=get_mo(n);
printf("%lld %lld\n",ans1,ans2);
}
} int main()
{
work();
return 0;
}
BZOJ3944 Sum的更多相关文章
- BZOJ3944: Sum(杜教筛模板)
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...
- [BZOJ3944]Sum(杜教筛)
3944: Sum Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6201 Solved: 1606[Submit][Status][Discuss ...
- BZOJ3944 Sum 数论 杜教筛
原文链接http://www.cnblogs.com/zhouzhendong/p/8671759.html 题目传送门 - BZOJ3944 题意 多组数据(组数<=10). 每组数据一个正整 ...
- 杜教筛 && bzoj3944 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- 杜教筛:Bzoj3944: sum
题意 求\(\sum_{i=1}^{n}\varphi(i)和\sum_{i=1}^{n}\mu(i)\) \(n <= 2^{31}-1\) 不会做啊... 只会线性筛,显然不能线性筛 这个时 ...
- 2019.02.12 bzoj3944: Sum(杜教筛)
传送门 题意: 思路:直接上杜教筛. 知道怎么推导就很简单了,注意预处理的范围. 然后我因为预处理范围不对被zxyoi教育了(ldx你这个傻×两倍常数活该被卡TLE) 喜闻乐见 代码: #includ ...
- bzoj3944: Sum 杜教筛板子题
板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...
- [bzoj3944] sum [杜教筛模板]
题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...
- Min_25筛 学习笔记
这儿只是一个简单说明/概括/总结. 原理见这: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushu ...
随机推荐
- python入门-python解释器执行
最近由于公司需要,接触了python这门神奇的语言,给我的感觉就是开发快速和代码简洁. 开始还是先罗列一下解释性语言和编译性语言的差别吧0.0! 编译性语言:是在程序运行前,需要专门的一个编译过程 ...
- mysql主从之slave-skip-errors和sql_slave_skip_counter
一般来说,为了保险起见,在主从库维护中,有时候需要跳过某个无法执行的命令,需要在slave处于stop状态下,执行 set global sql_slave_skip_counter=1以跳过命令.但 ...
- 北京54全国80及WGS84坐标系的相互转换
这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准.其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3:西安80坐标系, ...
- Using Dagger2 in Android
Dagger2是一个Java和Android的依赖注入框架. 本文介绍Android中dagger2的基本使用. 其中包括@Inject, @Component, @Module和@Provides注 ...
- 记录一次Quartz2D学习(三)
在(二)内,讲到了几何图形的绘制,这次就讲文本与图片的绘制 3 图片与文本 3.1 文本绘制 - (void)drawRect:(CGRect)rect { NSString * str = @&qu ...
- [Erlang 0126] 我们读过的Erlang论文
我在Erlang Resources 豆瓣小站上发起了一个征集活动 [链接] ,"[征集] 我们读过的Erlang论文",希望大家来参加.发起这样一个活动的目的是因为Erlang相 ...
- [MySQL性能优化系列]提高缓存命中率
1. 背景 通常情况下,能用一条sql语句完成的查询,我们尽量不用多次查询完成.因为,查询次数越多,通信开销越大.但是,分多次查询,有可能提高缓存命中率.到底使用一个复合查询还是多个独立查询,需要根据 ...
- linux共享windows文件并自动化改变文件编码
以k3日志为例: 在k3的数据库服务器进行如下操作: 1.在k3的数据库服务器导出日志数据到本地D:/K3LOG下(脚本自动化执行) 2.设置脚本定时任务每天拷贝D:/K3LOG下的文件到D:/K3L ...
- JMM(java内存模型)
What is a memory model, anyway? In multiprocessorsystems, processors generally have one or more laye ...
- [Unity3D]巧妙利用父级子级实现Camera场景平面漫游
本文系作者原创,转载请注明出处 入门级的笔者想了一上午才搞懂那个欧拉角的Camera旋转..=.= 在调试场景的时候,每次都本能的按下W想前进,但是这是不可能的(呵呵) 于是便心血来潮想顺便添加个Ke ...
