【bzoj3751】[NOIP2014]解方程 数论
题目描述
已知多项式方程:
输入
输出
第一行输出方程在[1,m]内的整数解的个数。
样例输入
2 10
2
-3
1
样例输出
2
1
2
题解
真心不难的数论题
首先高精度FFT肯定是不可取的,那么就必须取模。但是只有1个模数极有可能多解,所以多选几个大质数模数,如果左边的式子对所有模数取模都为0,则几乎可以判定为原方程的解。
但是这样时间复杂度为$O(nmt)$,其中t是模数个数,会TLE。
我们设$f(i,j)$表示当左面的一坨的x=i时对j取模得到的数,那么显然$f(i,j)=f(i+j,j)=f(i+2j,j)=...$。
所以我们只需要处理0~j-1的数即可,剩下的直接根据前面的推出来。
这样的时间复杂度为$O(t(np+m))$,其中p为模数大小。
所以p不能太大,但是太小也会影响答案正确性,所以取20000左右的质数最合适。
Tip1:bzoj里的1010000指的是1010000,所以a是高精度数(卡在这里无数次qaq)
Tip2:bzoj这道题加强了(加多了)数据,要数据后发现有40个点,但是时间依然是10s,所以常数卡得很死,不能使用long long,模数最好只有3个等等。
#include <cstdio>
#include <cstring>
const int tot = 3;
int prime[3] = {20029 , 22277 , 23333};
int n , m , a[1000010][3] , ok[100010] , cnt[1000010];
char str[1000010];
bool judge(int x , int p)
{
int i , sum = 0;
for(i = n ; ~i ; i -- )
sum = ((sum * x % prime[p] + a[i][p]) % prime[p] + prime[p]) % prime[p];
return !sum;
}
void read(int c)
{
scanf("%s" , str);
int i , j , flag = 1 , l = strlen(str);
if(str[0] == '-')
{
flag = -1;
for(i = 0 ; i < l ; i ++ ) str[i] = str[i + 1];
l -- ;
}
for(i = 0 ; i < tot ; i ++ )
{
int sum = 0;
for(j = 0 ; j < l ; j ++ ) sum = (sum * 10 + str[j] - '0') % prime[i];
a[c][i] = sum * flag;
}
}
int main()
{
int i , j , num = 0;
scanf("%d%d" , &n , &m);
for(i = 0 ; i <= n ; i ++ ) read(i);
for(i = 0 ; i < tot ; i ++ )
{
memset(ok , 0 , sizeof(ok));
for(j = 0 ; j < prime[i] ; j ++ )
if(judge(j , i))
ok[j] = 1;
for(j = 1 ; j <= m ; j ++ ) cnt[j] += ok[j % prime[i]];
}
for(i = 1 ; i <= m ; i ++ )
if(cnt[i] == tot)
num ++ ;
printf("%d\n" , num);
for(i = 1 ; i <= m ; i ++ )
if(cnt[i] == tot)
printf("%d\n" , i);
return 0;
}
【bzoj3751】[NOIP2014]解方程 数论的更多相关文章
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
- BZOJ3751 NOIP2014 解方程(Hash)
题目链接 BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...
- [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程
在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include& ...
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- luogu2312 解方程 (数论,hash)
luogu2312 解方程 (数论,hash) 第一次外出学习讲过的题目,然后被讲课人的一番话惊呆了. 这个题,我想着当年全国只有十几个满分.....然后他又说了句我考场A这道题时,用了5个模数 确实 ...
随机推荐
- C基础练习题
1.下面有关C程序操作过程的说法中,错误的是______. A.C源程序经过编译,得到的目标文件即为可执行文件 B.C源程序的链接实质上是将目标代码文件和库函数等代码进行连接的过程 C.C源程序不能通 ...
- 2407: C语言习题 整数转换成字符串
2407: C语言习题 整数转换成字符串 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 917 Solved: 416[Submit][Status] ...
- Deepgreen DB 是什么(含Deepgreen和Greenplum下载地址)
Deepgreen官网下载地址:http://vitessedata.com/products/deepgreen-db/download/ 不需要注册 Greenplum官网下载地址:https:/ ...
- 安装mysqlclient失败
环境:python3.6 sudo apt-get install python3.6-dev sudo apt-get install default-libmysqlclient-dev 参考:h ...
- Truncate a string-freecodecamp算法题目
Truncate a string(截断字符串) 要求 如果字符串的长度比指定的参数num长,则把多余的部分用...来表示. 插入到字符串尾部的三个点号也会计入字符串的长度. 如果指定的参数num小于 ...
- tensorflow目标检测API之训练自己的数据集
1.训练文件的配置 将生成的csv和record文件都放在新建的mydata文件夹下,并打开object_detection文件夹下的data文件夹,复制一个后缀为.pbtxt的文件到mtdata文件 ...
- 【离线 撤销并查集 线段树分治】bzoj1018: [SHOI2008]堵塞的交通traffic
本题可化成更一般的问题:离线动态图询问连通性 当然可以利用它的特殊性质,采用在线线段树维护一些标记的方法 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常 ...
- linux下的一些命令分析与shell的一些命令
对> 与 >>的理解 echo "aaa" > aaa.txt 这个是在aaa.txt中写入aaa 可以用cat aaa.txt查看 echo &qu ...
- ACM-ICPC 2016 Qingdao Preliminary Contest G. Sort
Recently, Bob has just learnt a naive sorting algorithm: merge sort. Now, Bob receives a task from A ...
- (转)全网最!详!细!tarjan算法讲解
byhttp://www.cnblogs.com/uncle-lu/p/5876729.html 全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这 ...